import sys import os import pandas as pd import pdfplumber import json import gradio as gr from typing import List, Optional from concurrent.futures import ThreadPoolExecutor, as_completed import hashlib import shutil import time from functools import lru_cache from threading import Thread import re # Environment setup current_dir = os.path.dirname(os.path.abspath(__file__)) src_path = os.path.abspath(os.path.join(current_dir, "src")) sys.path.insert(0, src_path) # Cache directories base_dir = "/data" os.makedirs(base_dir, exist_ok=True) model_cache_dir = os.path.join(base_dir, "txagent_models") tool_cache_dir = os.path.join(base_dir, "tool_cache") file_cache_dir = os.path.join(base_dir, "cache") report_dir = os.path.join(base_dir, "reports") os.makedirs(model_cache_dir, exist_ok=True) os.makedirs(tool_cache_dir, exist_ok=True) os.makedirs(file_cache_dir, exist_ok=True) os.makedirs(report_dir, exist_ok=True) os.environ.update({ "TRANSFORMERS_CACHE": model_cache_dir, "HF_HOME": model_cache_dir, "TOKENIZERS_PARALLELISM": "false", "CUDA_LAUNCH_BLOCKING": "1" }) from txagent.txagent import TxAgent MEDICAL_KEYWORDS = { 'diagnosis', 'assessment', 'plan', 'results', 'medications', 'allergies', 'summary', 'impression', 'findings', 'recommendations' } def sanitize_utf8(text: str) -> str: return text.encode("utf-8", "ignore").decode("utf-8") def file_hash(path: str) -> str: with open(path, "rb") as f: return hashlib.md5(f.read()).hexdigest() def extract_priority_pages(file_path: str, max_pages: int = 20) -> str: try: text_chunks = [] with pdfplumber.open(file_path) as pdf: for i, page in enumerate(pdf.pages[:3]): text_chunks.append(f"=== Page {i+1} ===\n{(page.extract_text() or '').strip()}") for i, page in enumerate(pdf.pages[3:max_pages], start=4): page_text = page.extract_text() or "" if any(re.search(rf'\\b{kw}\\b', page_text.lower()) for kw in MEDICAL_KEYWORDS): text_chunks.append(f"=== Page {i} ===\n{page_text.strip()}") return "\n\n".join(text_chunks) except Exception as e: return f"PDF processing error: {str(e)}" def convert_file_to_json(file_path: str, file_type: str) -> str: try: h = file_hash(file_path) cache_path = os.path.join(file_cache_dir, f"{h}.json") if os.path.exists(cache_path): return open(cache_path, "r", encoding="utf-8").read() if file_type == "pdf": text = extract_priority_pages(file_path) result = json.dumps({"filename": os.path.basename(file_path), "content": text, "status": "initial"}) Thread(target=full_pdf_processing, args=(file_path, h)).start() elif file_type == "csv": df = pd.read_csv(file_path, encoding_errors="replace", header=None, dtype=str, skip_blank_lines=False, on_bad_lines="skip") content = df.fillna("").astype(str).values.tolist() result = json.dumps({"filename": os.path.basename(file_path), "rows": content}) elif file_type in ["xls", "xlsx"]: try: df = pd.read_excel(file_path, engine="openpyxl", header=None, dtype=str) except: df = pd.read_excel(file_path, engine="xlrd", header=None, dtype=str) content = df.fillna("").astype(str).values.tolist() result = json.dumps({"filename": os.path.basename(file_path), "rows": content}) else: return json.dumps({"error": f"Unsupported file type: {file_type}"}) with open(cache_path, "w", encoding="utf-8") as f: f.write(result) return result except Exception as e: return json.dumps({"error": f"Error processing {os.path.basename(file_path)}: {str(e)}"}) def full_pdf_processing(file_path: str, file_hash: str): try: cache_path = os.path.join(file_cache_dir, f"{file_hash}_full.json") if os.path.exists(cache_path): return with pdfplumber.open(file_path) as pdf: full_text = "\n".join([f"=== Page {i+1} ===\n{(page.extract_text() or '').strip()}" for i, page in enumerate(pdf.pages)]) result = json.dumps({"filename": os.path.basename(file_path), "content": full_text, "status": "complete"}) with open(cache_path, "w", encoding="utf-8") as f: f.write(result) with open(os.path.join(report_dir, f"{file_hash}_report.txt"), "w", encoding="utf-8") as out: out.write(full_text) except Exception as e: print(f"Background processing failed: {str(e)}") def init_agent(): default_tool_path = os.path.abspath("data/new_tool.json") target_tool_path = os.path.join(tool_cache_dir, "new_tool.json") if not os.path.exists(target_tool_path): shutil.copy(default_tool_path, target_tool_path) agent = TxAgent( model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B", rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B", tool_files_dict={"new_tool": target_tool_path}, force_finish=True, enable_checker=True, step_rag_num=8, seed=100, additional_default_tools=[] ) agent.init_model() return agent def create_ui(agent: TxAgent): with gr.Blocks(theme=gr.themes.Soft()) as demo: gr.Markdown("