import sys import os import pdfplumber import json import gradio as gr from typing import List from concurrent.futures import ThreadPoolExecutor, as_completed import hashlib import re import psutil import subprocess from collections import defaultdict # Persistent directory for Hugging Face Space persistent_dir = os.getenv("HF_HOME", "/data/hf_cache") os.makedirs(persistent_dir, exist_ok=True) model_cache_dir = os.path.join(persistent_dir, "txagent_models") file_cache_dir = os.path.join(persistent_dir, "cache") report_dir = os.path.join(persistent_dir, "reports") vllm_cache_dir = os.path.join(persistent_dir, "vllm_cache") for directory in [model_cache_dir, file_cache_dir, report_dir, vllm_cache_dir]: os.makedirs(directory, exist_ok=True) os.environ["HF_HOME"] = model_cache_dir os.environ["TRANSFORMERS_CACHE"] = model_cache_dir os.environ["VLLM_CACHE_DIR"] = vllm_cache_dir os.environ["TOKENIZERS_PARALLELISM"] = "false" os.environ["CUDA_LAUNCH_BLOCKING"] = "1" current_dir = os.path.dirname(os.path.abspath(__file__)) src_path = os.path.abspath(os.path.join(current_dir, "src")) sys.path.insert(0, src_path) from txagent.txagent import TxAgent def sanitize_utf8(text: str) -> str: return text.encode("utf-8", "ignore").decode("utf-8") def file_hash(path: str) -> str: with open(path, "rb") as f: return hashlib.md5(f.read()).hexdigest() def extract_all_pages(file_path: str) -> str: try: text_chunks = [] with pdfplumber.open(file_path) as pdf: for page in pdf.pages: page_text = page.extract_text() or "" text_chunks.append(page_text.strip()) return "\n".join(text_chunks) except Exception as e: return f"PDF processing error: {str(e)}" def convert_file_to_json(file_path: str, file_type: str) -> str: try: h = file_hash(file_path) cache_path = os.path.join(file_cache_dir, f"{h}.json") if os.path.exists(cache_path): with open(cache_path, "r", encoding="utf-8") as f: return f.read() if file_type == "pdf": text = extract_all_pages(file_path) result = json.dumps({"filename": os.path.basename(file_path), "content": text, "status": "initial"}) else: result = json.dumps({"error": f"Unsupported file type: {file_type}"}) with open(cache_path, "w", encoding="utf-8") as f: f.write(result) return result except Exception as e: return json.dumps({"error": f"Error processing {os.path.basename(file_path)}: {str(e)}"}) def log_system_usage(tag=""): try: cpu = psutil.cpu_percent(interval=1) mem = psutil.virtual_memory() print(f"[{tag}] CPU: {cpu}% | RAM: {mem.used // (1024**2)}MB / {mem.total // (1024**2)}MB") result = subprocess.run( ["nvidia-smi", "--query-gpu=memory.used,memory.total,utilization.gpu", "--format=csv,nounits,noheader"], capture_output=True, text=True ) if result.returncode == 0: used, total, util = result.stdout.strip().split(", ") print(f"[{tag}] GPU: {used}MB / {total}MB | Utilization: {util}%") except Exception as e: print(f"[{tag}] GPU/CPU monitor failed: {e}") def clean_response(text: str) -> str: text = sanitize_utf8(text) # Remove all tool and reasoning text text = re.sub(r"\[TOOL_CALLS\].*|(?:get_|tool\s|retrieve\s|use\s).*?\n", "", text, flags=re.DOTALL | re.IGNORECASE) text = re.sub(r"\{'meta':\s*\{.*?\}\s*,\s*'results':\s*\[.*?\]\}\n?", "", text, flags=re.DOTALL) text = re.sub( r"(?i)(to\s|analyze|will\s|since\s|no\s|none|previous|attempt|involve|check\s|explore|manually|" r"start|look|use|focus|retrieve|tool|based\s|overall|indicate|mention|consider|ensure|need\s|" r"provide|review|assess|identify|potential|records|patient|history|symptoms|medication|" r"conflict|assessment|follow-up|issue|reasoning|step|prompt|address).*?\n", "", text, flags=re.DOTALL ) text = re.sub(r"\n{3,}", "\n\n", text).strip() # Only keep heading lines and bullets lines = [] valid_heading = False for line in text.split("\n"): line = line.strip() if line.lower() in ["missed diagnoses:", "medication conflicts:", "incomplete assessments:", "urgent follow-up:"]: valid_heading = True lines.append(f"**{line[:-1]}**:") elif valid_heading and line.startswith("-"): lines.append(line) else: valid_heading = False return "\n".join(lines).strip() def consolidate_findings(responses: List[str]) -> str: # Merge unique findings findings = defaultdict(set) headings = ["Missed Diagnoses", "Medication Conflicts", "Incomplete Assessments", "Urgent Follow-up"] for response in responses: if not response: continue current_heading = None for line in response.split("\n"): line = line.strip() if not line: continue if line.lower().startswith(tuple(h.lower() + ":" for h in headings)): current_heading = next(h for h in headings if line.lower().startswith(h.lower() + ":")) elif current_heading and line.startswith("-"): findings[current_heading].add(line) # Format output output = [] for heading in headings: if findings[heading]: output.append(f"**{heading}**:") output.extend(sorted(findings[heading], key=lambda x: x.lower())) return "\n".join(output).strip() if output else "No oversights identified." def init_agent(): print("🔁 Initializing model...") log_system_usage("Before Load") agent = TxAgent( model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B", rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B", force_finish=True, enable_checker=True, step_rag_num=0, # Disable RAG to prevent tool artifacts seed=100, ) agent.init_model() # No dtype argument log_system_usage("After Load") print("✅ Agent Ready") return agent def create_ui(agent): with gr.Blocks(theme=gr.themes.Soft()) as demo: gr.Markdown("

🩺 Clinical Oversight Assistant

") chatbot = gr.Chatbot(label="Analysis", height=600, type="messages") file_upload = gr.File(file_types=[".pdf"], file_count="multiple") msg_input = gr.Textbox(placeholder="Ask about potential oversights...", show_label=False) send_btn = gr.Button("Analyze", variant="primary") download_output = gr.File(label="Download Report") def analyze(message: str, history: List[dict], files: List): history.append({"role": "user", "content": message}) history.append({"role": "assistant", "content": "🔄 Analyzing..."}) yield history, None extracted = "" file_hash_value = "" if files: with ThreadPoolExecutor(max_workers=6) as executor: futures = [executor.submit(convert_file_to_json, f.name, f.name.split(".")[-1].lower()) for f in files] results = [sanitize_utf8(f.result()) for f in as_completed(futures)] extracted = "\n".join(results) file_hash_value = file_hash(files[0].name) if files else "" # Tiny chunks for speed chunk_size = 1000 chunks = [extracted[i:i + chunk_size] for i in range(0, len(extracted), chunk_size)] chunk_responses = [] batch_size = 4 # Batch for A100 prompt_template = """ Output only oversights under these headings, one point each. No tools, reasoning, or text beyond headings and bullets. **Missed Diagnoses**: **Medication Conflicts**: **Incomplete Assessments**: **Urgent Follow-up**: Records: {chunk} """ try: # Batch process chunks for i in range(0, len(chunks), batch_size): batch = chunks[i:i + batch_size] batch_responses = [] for chunk in batch: prompt = prompt_template.format(chunk=chunk) chunk_response = "" for output in agent.run_gradio_chat( message=prompt, history=[], temperature=0.1, max_new_tokens=128, max_token=4096, # Revert to 4096 as 8192 may not be supported call_agent=False, conversation=[], ): if output is None: continue if isinstance(output, list): for m in output: if hasattr(m, 'content') and m.content: cleaned = clean_response(m.content) if cleaned: chunk_response += cleaned + "\n" elif isinstance(output, str) and output.strip(): cleaned = clean_response(output) if cleaned: chunk_response += cleaned + "\n" if chunk_response: batch_responses.append(chunk_response) chunk_responses.extend(batch_responses) # Single final output final_response = consolidate_findings(chunk_responses) history[-1]["content"] = final_response yield history, None # Report file report_path = os.path.join(report_dir, f"{file_hash_value}_report.txt") if file_hash_value else None if report_path and final_response != "No oversights identified.": with open(report_path, "w", encoding="utf-8") as f: f.write(final_response) yield history, report_path if report_path and os.path.exists(report_path) else None except Exception as e: print("🚨 ERROR:", e) history[-1]["content"] = f"❌ Error: {str(e)}" yield history, None send_btn.click(analyze, inputs=[msg_input, gr.State([]), file_upload], outputs=[chatbot, download_output]) msg_input.submit(analyze, inputs=[msg_input, gr.State([]), file_upload], outputs=[chatbot, download_output]) return demo if __name__ == "__main__": print("🚀 Launching app...") agent = init_agent() demo = create_ui(agent) demo.queue(api_open=False).launch( server_name="0.0.0.0", server_port=7860, show_error=True, allowed_paths=[report_dir], share=False )