import sys import os import pandas as pd import gradio as gr import re import hashlib import shutil from datetime import datetime from collections import defaultdict from typing import List, Dict, Tuple # Configuration WORKING_DIR = os.getcwd() REPORT_DIR = os.path.join(WORKING_DIR, "reports") os.makedirs(REPORT_DIR, exist_ok=True) # Model configuration MODEL_CACHE_DIR = os.path.join(WORKING_DIR, "model_cache") os.makedirs(MODEL_CACHE_DIR, exist_ok=True) os.environ["HF_HOME"] = MODEL_CACHE_DIR os.environ["TRANSFORMERS_CACHE"] = MODEL_CACHE_DIR # Import TxAgent after setting up environment sys.path.append(os.path.join(WORKING_DIR, "src")) from txagent.txagent import TxAgent class PatientHistoryAnalyzer: def __init__(self): self.max_token_length = 2000 self.max_text_length = 500 self.agent = self._initialize_agent() def _initialize_agent(self): """Initialize the TxAgent with proper configuration""" tool_path = os.path.join(WORKING_DIR, "data", "new_tool.json") if not os.path.exists(tool_path): raise FileNotFoundError(f"Tool file not found at {tool_path}") return TxAgent( model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B", rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B", tool_files_dict={"new_tool": tool_path}, force_finish=True, enable_checker=True, step_rag_num=4, seed=100, additional_default_tools=[], ) def clean_text(self, text: str) -> str: """Clean and normalize text fields""" if not isinstance(text, str): text = str(text) text = re.sub(r'\s+', ' ', text).strip() return text[:self.max_text_length] def process_excel(self, file_path: str) -> Dict[str, List]: """Process Excel file into structured patient data""" try: df = pd.read_excel(file_path) df = df.sort_values('Interview Date') data = { 'timeline': [], 'medications': defaultdict(list), 'diagnoses': defaultdict(list), 'tests': defaultdict(list), 'doctors': set(), 'all_entries': [] } for _, row in df.iterrows(): entry = { 'date': self.clean_text(row.get('Interview Date', '')), 'doctor': self.clean_text(row.get('Interviewer', '')), 'form': self.clean_text(row.get('Form Name', '')), 'item': self.clean_text(row.get('Form Item', '')), 'response': self.clean_text(row.get('Item Response', '')), 'notes': self.clean_text(row.get('Description', '')) } data['timeline'].append(entry) data['doctors'].add(entry['doctor']) data['all_entries'].append(entry) form_lower = entry['form'].lower() if 'medication' in form_lower or 'drug' in form_lower: data['medications'][entry['item']].append(entry) elif 'diagnosis' in form_lower: data['diagnoses'][entry['item']].append(entry) elif 'test' in form_lower or 'lab' in form_lower: data['tests'][entry['item']].append(entry) return data except Exception as e: raise ValueError(f"Error processing Excel file: {str(e)}") def generate_analysis_prompt(self, patient_data: Dict) -> List[Dict]: """Generate analysis prompts that respect token limits""" prompts = [] # Current Status Prompt current_prompt = self._create_current_status_prompt(patient_data) prompts.append({ 'type': 'current_status', 'content': current_prompt }) # Historical Analysis Prompt if len(patient_data['all_entries']) > 10: history_prompt = self._create_historical_prompt(patient_data) prompts.append({ 'type': 'historical', 'content': history_prompt }) # Medication-Specific Prompt if len(patient_data['medications']) > 3: meds_prompt = self._create_medication_prompt(patient_data) prompts.append({ 'type': 'medications', 'content': meds_prompt }) return prompts def _create_current_status_prompt(self, data: Dict) -> str: """Create prompt for current patient status""" recent_entries = data['timeline'][-10:] prompt_lines = [ "**Comprehensive Patient Status Analysis**", "Focus on RECENT appointments and CURRENT health status.", "Analyze for:", "- Medication consistency", "- Diagnostic agreement between providers", "- Recent concerning findings", "- Immediate follow-up needs", "", "**Recent Timeline (last 10 entries):**" ] for entry in recent_entries: prompt_lines.append( f"- {entry['date']}: {entry['form']} - {entry['item']} = {entry['response']} (by {entry['doctor']})" ) prompt_lines.extend([ "", "**Current Medications:**", *[f"- {med}: {entries[-1]['response']} (last updated {entries[-1]['date']})" for med, entries in data['medications'].items()], "", "**Active Diagnoses:**", *[f"- {diag}: {entries[-1]['response']} (last updated {entries[-1]['date']})" for diag, entries in data['diagnoses'].items()], "", "**Required Output Format:**", "### Summary of Current Status", "### Medication Review", "### Diagnostic Consistency", "### Urgent Concerns", "### Recommended Actions" ]) return "\n".join(prompt_lines) def _create_historical_prompt(self, data: Dict) -> str: """Create prompt for historical analysis""" return "\n".join([ "**Historical Patient Analysis**", "Focus on LONG-TERM PATTERNS and HISTORY.", "", "**Key Analysis Points:**", "- Treatment changes over time", "- Recurring symptoms/issues", "- Diagnostic evolution", "- Medication history", "", "**Historical Timeline (condensed):**", *[f"- {entry['date'][:7]}: {entry['form']} - {entry['response']}" for entry in data['all_entries'][:-10]], "", "**Required Output Format:**", "### Historical Patterns", "### Treatment Evolution", "### Chronic Issues", "### Long-term Recommendations" ]) def _create_medication_prompt(self, data: Dict) -> str: """Create medication-specific prompt""" return "\n".join([ "**Medication-Specific Analysis**", "Focus on MEDICATION HISTORY and POTENTIAL ISSUES.", "", "**Medication History:**", *[f"- {med}: " + ", ".join( f"{e['date']}: {e['response']} (by {e['doctor']})" for e in entries ) for med, entries in data['medications'].items()], "", "**Analysis Focus:**", "- Potential interactions", "- Dosage changes", "- Prescriber patterns", "- Adherence issues", "", "**Required Output Format:**", "### Medication Summary", "### Potential Issues", "### Prescriber Patterns", "### Recommendations" ]) def _call_agent(self, prompt: str) -> str: """Call TxAgent with proper error handling""" try: response = "" for result in self.agent.run_gradio_chat( message=prompt, history=[], temperature=0.2, max_new_tokens=1024, max_token=2048, call_agent=False, conversation=[], ): if isinstance(result, list): for r in result: if hasattr(r, 'content') and r.content: response += r.content + "\n" elif isinstance(result, str): response += result + "\n" return response.strip() except Exception as e: return f"Error in model response: {str(e)}" def generate_report(self, analysis_results: List[str]) -> Tuple[str, str]: """Combine analysis results into final report""" report = [ "# Comprehensive Patient History Analysis", f"**Generated on**: {datetime.now().strftime('%Y-%m-%d %H:%M')}", "" ] for result in analysis_results: report.extend(["", "---", "", result]) report.extend([ "", "## Overall Clinical Summary", "This report combines analyses of:", "- Current health status", "- Historical patterns", "- Medication history", "", "**Key Takeaways:**", "[Generated summary of most critical findings would appear here]" ]) full_report = "\n".join(report) # Save to file in working directory timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") report_filename = f"patient_report_{timestamp}.md" report_path = os.path.join(REPORT_DIR, report_filename) with open(report_path, 'w') as f: f.write(full_report) return full_report, report_path def analyze(self, file_path: str) -> Tuple[str, str]: """Main analysis workflow""" try: patient_data = self.process_excel(file_path) prompts = self.generate_analysis_prompt(patient_data) # Call TxAgent for each prompt analysis_results = [] for prompt in prompts: response = self._call_agent(prompt['content']) analysis_results.append(response) return self.generate_report(analysis_results) except Exception as e: return f"Error during analysis: {str(e)}", "" def create_interface(): analyzer = PatientHistoryAnalyzer() with gr.Blocks(title="Patient History Analyzer", theme=gr.themes.Soft()) as demo: gr.Markdown("# 🏥 Comprehensive Patient History Analysis") with gr.Tabs(): with gr.TabItem("Analysis"): with gr.Row(): with gr.Column(scale=1): file_input = gr.File( label="Upload Patient Records (Excel)", file_types=[".xlsx"], type="filepath" ) analyze_btn = gr.Button("Analyze Full History", variant="primary") with gr.Column(scale=2): output_display = gr.Markdown( label="Analysis Results", elem_id="results" ) report_download = gr.File( label="Download Full Report", interactive=False ) with gr.TabItem("Instructions"): gr.Markdown(""" ## How to Use This Tool 1. **Upload** your patient's Excel file 2. **Click Analyze** to process the history 3. **Review** the comprehensive analysis 4. **Download** the full report ### File Requirements Excel file must contain: - Booking Number - Form Name - Form Item - Item Response - Interview Date - Interviewer - Description """) analyze_btn.click( fn=analyzer.analyze, inputs=file_input, outputs=[output_display, report_download], api_name="analyze" ) return demo if __name__ == "__main__": try: demo = create_interface() demo.launch( server_name="0.0.0.0", server_port=7860, show_error=True, allowed_paths=[WORKING_DIR, REPORT_DIR] ) except Exception as e: print(f"Error launching application: {str(e)}") sys.exit(1)