Update src/txagent/txagent.py
Browse files- src/txagent/txagent.py +470 -204
src/txagent/txagent.py
CHANGED
|
@@ -12,22 +12,23 @@ from tooluniverse import ToolUniverse
|
|
| 12 |
from gradio import ChatMessage
|
| 13 |
from .toolrag import ToolRAGModel
|
| 14 |
import torch
|
|
|
|
| 15 |
import logging
|
| 16 |
-
|
| 17 |
logger = logging.getLogger(__name__)
|
| 18 |
logging.basicConfig(level=logging.INFO)
|
| 19 |
|
| 20 |
from .utils import NoRepeatSentenceProcessor, ReasoningTraceChecker, tool_result_format
|
| 21 |
|
|
|
|
| 22 |
class TxAgent:
|
| 23 |
def __init__(self, model_name,
|
| 24 |
rag_model_name,
|
| 25 |
-
tool_files_dict=None,
|
| 26 |
-
enable_finish=
|
| 27 |
-
enable_rag=
|
| 28 |
enable_summary=False,
|
| 29 |
init_rag_num=0,
|
| 30 |
-
step_rag_num=
|
| 31 |
summary_mode='step',
|
| 32 |
summary_skip_last_k=0,
|
| 33 |
summary_context_length=None,
|
|
@@ -44,9 +45,10 @@ class TxAgent:
|
|
| 44 |
self.rag_model_name = rag_model_name
|
| 45 |
self.tool_files_dict = tool_files_dict
|
| 46 |
self.model = None
|
| 47 |
-
self.rag_model = ToolRAGModel(rag_model_name)
|
| 48 |
self.tooluniverse = None
|
| 49 |
-
self.
|
|
|
|
| 50 |
self.self_prompt = "Strictly follow the instruction."
|
| 51 |
self.chat_prompt = "You are helpful assistant to chat with the user."
|
| 52 |
self.enable_finish = enable_finish
|
|
@@ -66,28 +68,26 @@ class TxAgent:
|
|
| 66 |
|
| 67 |
def init_model(self):
|
| 68 |
self.load_models()
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
self.load_tool_desc_embedding()
|
| 72 |
|
| 73 |
def print_self_values(self):
|
| 74 |
for attr, value in self.__dict__.items():
|
| 75 |
-
|
| 76 |
|
| 77 |
def load_models(self, model_name=None):
|
| 78 |
if model_name is not None:
|
| 79 |
if model_name == self.model_name:
|
| 80 |
return f"The model {model_name} is already loaded."
|
| 81 |
self.model_name = model_name
|
| 82 |
-
|
|
|
|
| 83 |
self.chat_template = Template(self.model.get_tokenizer().chat_template)
|
| 84 |
self.tokenizer = self.model.get_tokenizer()
|
|
|
|
| 85 |
return f"Model {model_name} loaded successfully."
|
| 86 |
|
| 87 |
def load_tooluniverse(self):
|
| 88 |
-
if self.tool_files_dict is None and not self.enable_rag:
|
| 89 |
-
logger.info("Skipping tool universe loading: RAG disabled and no tool files.")
|
| 90 |
-
return
|
| 91 |
self.tooluniverse = ToolUniverse(tool_files=self.tool_files_dict)
|
| 92 |
self.tooluniverse.load_tools()
|
| 93 |
special_tools = self.tooluniverse.prepare_tool_prompts(
|
|
@@ -95,24 +95,20 @@ class TxAgent:
|
|
| 95 |
self.special_tools_name = [tool['name'] for tool in special_tools]
|
| 96 |
|
| 97 |
def load_tool_desc_embedding(self):
|
| 98 |
-
|
| 99 |
-
self.rag_model.load_tool_desc_embedding(self.tooluniverse)
|
| 100 |
|
| 101 |
def rag_infer(self, query, top_k=5):
|
| 102 |
-
if not self.enable_rag or not self.rag_model:
|
| 103 |
-
return []
|
| 104 |
return self.rag_model.rag_infer(query, top_k)
|
| 105 |
|
| 106 |
def initialize_tools_prompt(self, call_agent, call_agent_level, message):
|
| 107 |
picked_tools_prompt = []
|
| 108 |
-
if not self.enable_rag:
|
| 109 |
-
return picked_tools_prompt, call_agent_level
|
| 110 |
picked_tools_prompt = self.add_special_tools(
|
| 111 |
picked_tools_prompt, call_agent=call_agent)
|
| 112 |
if call_agent:
|
| 113 |
call_agent_level += 1
|
| 114 |
if call_agent_level >= 2:
|
| 115 |
call_agent = False
|
|
|
|
| 116 |
if not call_agent:
|
| 117 |
picked_tools_prompt += self.tool_RAG(
|
| 118 |
message=message, rag_num=self.init_rag_num)
|
|
@@ -121,12 +117,13 @@ class TxAgent:
|
|
| 121 |
def initialize_conversation(self, message, conversation=None, history=None):
|
| 122 |
if conversation is None:
|
| 123 |
conversation = []
|
|
|
|
| 124 |
conversation = self.set_system_prompt(
|
| 125 |
conversation, self.prompt_multi_step)
|
| 126 |
if history is not None:
|
| 127 |
if len(history) == 0:
|
| 128 |
conversation = []
|
| 129 |
-
|
| 130 |
else:
|
| 131 |
for i in range(len(history)):
|
| 132 |
if history[i]['role'] == 'user':
|
|
@@ -138,7 +135,9 @@ class TxAgent:
|
|
| 138 |
if i == len(history)-1 and history[i]['role'] == 'assistant':
|
| 139 |
conversation.append(
|
| 140 |
{"role": "assistant", "content": history[i]['content']})
|
|
|
|
| 141 |
conversation.append({"role": "user", "content": message})
|
|
|
|
| 142 |
return conversation
|
| 143 |
|
| 144 |
def tool_RAG(self, message=None,
|
|
@@ -146,52 +145,60 @@ class TxAgent:
|
|
| 146 |
existing_tools_prompt=[],
|
| 147 |
rag_num=5,
|
| 148 |
return_call_result=False):
|
| 149 |
-
|
| 150 |
-
return [] if not return_call_result else ([], [])
|
| 151 |
-
extra_factor = 30
|
| 152 |
if picked_tool_names is None:
|
| 153 |
assert picked_tool_names is not None or message is not None
|
| 154 |
picked_tool_names = self.rag_infer(
|
| 155 |
message, top_k=rag_num*extra_factor)
|
| 156 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 157 |
picked_tool_names_no_special = picked_tool_names_no_special[:rag_num]
|
| 158 |
picked_tool_names = picked_tool_names_no_special[:rag_num]
|
|
|
|
| 159 |
picked_tools = self.tooluniverse.get_tool_by_name(picked_tool_names)
|
| 160 |
-
picked_tools_prompt = self.tooluniverse.prepare_tool_prompts(
|
|
|
|
| 161 |
if return_call_result:
|
| 162 |
return picked_tools_prompt, picked_tool_names
|
| 163 |
return picked_tools_prompt
|
| 164 |
|
| 165 |
def add_special_tools(self, tools, call_agent=False):
|
| 166 |
-
if
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 183 |
return tools
|
| 184 |
|
| 185 |
def add_finish_tools(self, tools):
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
logger.info("Finish tool is added")
|
| 190 |
return tools
|
| 191 |
|
| 192 |
def set_system_prompt(self, conversation, sys_prompt):
|
| 193 |
if len(conversation) == 0:
|
| 194 |
-
conversation.append(
|
|
|
|
| 195 |
else:
|
| 196 |
conversation[0] = {"role": "system", "content": sys_prompt}
|
| 197 |
return conversation
|
|
@@ -203,15 +210,15 @@ class TxAgent:
|
|
| 203 |
call_agent=False,
|
| 204 |
call_agent_level=None,
|
| 205 |
temperature=None):
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
call_results = []
|
| 210 |
special_tool_call = ''
|
| 211 |
if function_call_json is not None:
|
| 212 |
if isinstance(function_call_json, list):
|
| 213 |
for i in range(len(function_call_json)):
|
| 214 |
-
|
| 215 |
if function_call_json[i]["name"] == 'Finish':
|
| 216 |
special_tool_call = 'Finish'
|
| 217 |
break
|
|
@@ -239,12 +246,14 @@ class TxAgent:
|
|
| 239 |
else:
|
| 240 |
call_result = call_result.split('[FinalAnswer]')[-1].strip()
|
| 241 |
else:
|
| 242 |
-
call_result = "Error: The CallAgent has been disabled."
|
| 243 |
else:
|
| 244 |
-
call_result = self.tooluniverse.run_one_function(
|
|
|
|
|
|
|
| 245 |
call_id = self.tooluniverse.call_id_gen()
|
| 246 |
function_call_json[i]["call_id"] = call_id
|
| 247 |
-
|
| 248 |
call_results.append({
|
| 249 |
"role": "tool",
|
| 250 |
"content": json.dumps({"tool_name": function_call_json[i]["name"], "content": call_result, "call_id": call_id})
|
|
@@ -252,30 +261,33 @@ class TxAgent:
|
|
| 252 |
else:
|
| 253 |
call_results.append({
|
| 254 |
"role": "tool",
|
| 255 |
-
"content": json.dumps({"content": "Not a valid function call."})
|
| 256 |
})
|
|
|
|
| 257 |
revised_messages = [{
|
| 258 |
"role": "assistant",
|
| 259 |
"content": message.strip(),
|
| 260 |
"tool_calls": json.dumps(function_call_json)
|
| 261 |
}] + call_results
|
|
|
|
|
|
|
| 262 |
return revised_messages, existing_tools_prompt, special_tool_call
|
| 263 |
|
| 264 |
def run_function_call_stream(self, fcall_str,
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
function_call_json, message = self.tooluniverse.extract_function_call_json(fcall_str, return_message=return_message, verbose=False)
|
| 276 |
call_results = []
|
| 277 |
special_tool_call = ''
|
| 278 |
-
|
|
|
|
| 279 |
if function_call_json is not None:
|
| 280 |
if isinstance(function_call_json, list):
|
| 281 |
for i in range(len(function_call_json)):
|
|
@@ -303,21 +315,25 @@ class TxAgent:
|
|
| 303 |
"\nYou must follow the following plan to answer the question: " +
|
| 304 |
str(solution_plan)
|
| 305 |
)
|
| 306 |
-
sub_agent_task = "Sub TxAgent plan: " +
|
|
|
|
| 307 |
call_result = yield from self.run_gradio_chat(
|
| 308 |
full_message, history=[], temperature=temperature,
|
| 309 |
max_new_tokens=1024, max_token=99999,
|
| 310 |
call_agent=False, call_agent_level=call_agent_level,
|
| 311 |
conversation=None,
|
| 312 |
sub_agent_task=sub_agent_task)
|
|
|
|
| 313 |
if call_result is not None and isinstance(call_result, str):
|
| 314 |
call_result = call_result.split('[FinalAnswer]')[-1]
|
| 315 |
else:
|
| 316 |
call_result = "⚠️ No content returned from sub-agent."
|
| 317 |
else:
|
| 318 |
-
call_result = "Error: The CallAgent has been disabled."
|
| 319 |
else:
|
| 320 |
-
call_result = self.tooluniverse.run_one_function(
|
|
|
|
|
|
|
| 321 |
call_id = self.tooluniverse.call_id_gen()
|
| 322 |
function_call_json[i]["call_id"] = call_id
|
| 323 |
call_results.append({
|
|
@@ -334,25 +350,34 @@ class TxAgent:
|
|
| 334 |
else:
|
| 335 |
call_results.append({
|
| 336 |
"role": "tool",
|
| 337 |
-
"content": json.dumps({"content": "Not a valid function call."})
|
| 338 |
})
|
|
|
|
| 339 |
revised_messages = [{
|
| 340 |
"role": "assistant",
|
| 341 |
"content": message.strip(),
|
| 342 |
"tool_calls": json.dumps(function_call_json)
|
| 343 |
}] + call_results
|
| 344 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 345 |
|
| 346 |
def get_answer_based_on_unfinished_reasoning(self, conversation, temperature, max_new_tokens, max_token, outputs=None):
|
| 347 |
-
if conversation[-1]['role'] == '
|
| 348 |
-
conversation.append(
|
|
|
|
|
|
|
|
|
|
| 349 |
last_outputs_str = self.llm_infer(messages=conversation,
|
| 350 |
-
|
| 351 |
-
|
| 352 |
-
|
| 353 |
-
|
| 354 |
-
|
| 355 |
-
|
| 356 |
return last_outputs_str
|
| 357 |
|
| 358 |
def run_multistep_agent(self, message: str,
|
|
@@ -362,10 +387,20 @@ class TxAgent:
|
|
| 362 |
max_round: int = 20,
|
| 363 |
call_agent=False,
|
| 364 |
call_agent_level=0) -> str:
|
| 365 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 366 |
picked_tools_prompt, call_agent_level = self.initialize_tools_prompt(
|
| 367 |
call_agent, call_agent_level, message)
|
| 368 |
conversation = self.initialize_conversation(message)
|
|
|
|
| 369 |
outputs = []
|
| 370 |
last_outputs = []
|
| 371 |
next_round = True
|
|
@@ -374,6 +409,7 @@ class TxAgent:
|
|
| 374 |
token_overflow = False
|
| 375 |
enable_summary = False
|
| 376 |
last_status = {}
|
|
|
|
| 377 |
if self.enable_checker:
|
| 378 |
checker = ReasoningTraceChecker(message, conversation)
|
| 379 |
try:
|
|
@@ -387,60 +423,73 @@ class TxAgent:
|
|
| 387 |
call_agent=call_agent,
|
| 388 |
call_agent_level=call_agent_level,
|
| 389 |
temperature=temperature)
|
|
|
|
| 390 |
if special_tool_call == 'Finish':
|
| 391 |
next_round = False
|
| 392 |
conversation.extend(function_call_messages)
|
|
|
|
|
|
|
|
|
|
| 393 |
content = function_call_messages[0]['content']
|
| 394 |
if content is None:
|
| 395 |
-
return "❌ No content returned after Finish."
|
| 396 |
return content.split('[FinalAnswer]')[-1]
|
|
|
|
| 397 |
if (self.enable_summary or token_overflow) and not call_agent:
|
|
|
|
|
|
|
| 398 |
enable_summary = True
|
| 399 |
last_status = self.function_result_summary(
|
| 400 |
conversation, status=last_status, enable_summary=enable_summary)
|
| 401 |
-
|
|
|
|
| 402 |
conversation.extend(function_call_messages)
|
| 403 |
-
outputs.append(tool_result_format(
|
|
|
|
| 404 |
else:
|
| 405 |
next_round = False
|
| 406 |
-
conversation.extend(
|
|
|
|
| 407 |
return ''.join(last_outputs).replace("</s>", "")
|
| 408 |
if self.enable_checker:
|
| 409 |
good_status, wrong_info = checker.check_conversation()
|
| 410 |
if not good_status:
|
| 411 |
-
|
|
|
|
|
|
|
| 412 |
break
|
| 413 |
last_outputs = []
|
| 414 |
outputs.append("### TxAgent:\n")
|
| 415 |
-
last_outputs_str, token_overflow = self.llm_infer(
|
| 416 |
-
|
| 417 |
-
|
| 418 |
-
|
| 419 |
-
|
| 420 |
-
|
| 421 |
-
max_token=max_token,
|
| 422 |
-
check_token_status=True)
|
| 423 |
if last_outputs_str is None:
|
| 424 |
-
|
| 425 |
if self.force_finish:
|
| 426 |
-
return self.get_answer_based_on_unfinished_reasoning(
|
| 427 |
-
|
| 428 |
-
|
| 429 |
-
|
|
|
|
| 430 |
if max_round == current_round:
|
| 431 |
-
|
| 432 |
if self.force_finish:
|
| 433 |
-
return self.get_answer_based_on_unfinished_reasoning(
|
| 434 |
-
|
| 435 |
-
|
|
|
|
| 436 |
except Exception as e:
|
| 437 |
-
|
| 438 |
if self.force_finish:
|
| 439 |
-
return self.get_answer_based_on_unfinished_reasoning(
|
| 440 |
-
|
| 441 |
-
|
| 442 |
|
| 443 |
def build_logits_processor(self, messages, llm):
|
|
|
|
| 444 |
tokenizer = llm.get_tokenizer()
|
| 445 |
if self.avoid_repeat and len(messages) > 2:
|
| 446 |
assistant_messages = []
|
|
@@ -449,49 +498,66 @@ class TxAgent:
|
|
| 449 |
assistant_messages.append(messages[-i]['content'])
|
| 450 |
if len(assistant_messages) == 2:
|
| 451 |
break
|
| 452 |
-
forbidden_ids = [tokenizer.encode(
|
| 453 |
-
|
| 454 |
-
|
|
|
|
|
|
|
| 455 |
|
| 456 |
def llm_infer(self, messages, temperature=0.1, tools=None,
|
| 457 |
output_begin_string=None, max_new_tokens=2048,
|
| 458 |
max_token=None, skip_special_tokens=True,
|
| 459 |
-
model=None, tokenizer=None, terminators=None, seed=None,
|
| 460 |
-
|
| 461 |
if model is None:
|
| 462 |
model = self.model
|
|
|
|
| 463 |
logits_processor = self.build_logits_processor(messages, model)
|
| 464 |
sampling_params = SamplingParams(
|
| 465 |
temperature=temperature,
|
| 466 |
max_tokens=max_new_tokens,
|
|
|
|
| 467 |
seed=seed if seed is not None else self.seed,
|
| 468 |
)
|
|
|
|
| 469 |
prompt = self.chat_template.render(
|
| 470 |
messages=messages, tools=tools, add_generation_prompt=True)
|
| 471 |
if output_begin_string is not None:
|
| 472 |
prompt += output_begin_string
|
|
|
|
| 473 |
if check_token_status and max_token is not None:
|
| 474 |
token_overflow = False
|
| 475 |
-
num_input_tokens = len(self.tokenizer.encode(
|
| 476 |
-
|
| 477 |
-
|
| 478 |
-
|
| 479 |
-
|
| 480 |
-
|
| 481 |
-
|
| 482 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 483 |
output = output[0].outputs[0].text
|
| 484 |
-
|
| 485 |
if check_token_status and max_token is not None:
|
| 486 |
return output, token_overflow
|
|
|
|
| 487 |
return output
|
| 488 |
|
| 489 |
def run_self_agent(self, message: str,
|
| 490 |
-
|
| 491 |
-
|
| 492 |
-
|
| 493 |
-
|
| 494 |
-
|
|
|
|
|
|
|
| 495 |
conversation.append({"role": "user", "content": message})
|
| 496 |
return self.llm_infer(messages=conversation,
|
| 497 |
temperature=temperature,
|
|
@@ -502,8 +568,10 @@ class TxAgent:
|
|
| 502 |
temperature: float,
|
| 503 |
max_new_tokens: int,
|
| 504 |
max_token: int) -> str:
|
| 505 |
-
|
| 506 |
-
|
|
|
|
|
|
|
| 507 |
conversation.append({"role": "user", "content": message})
|
| 508 |
return self.llm_infer(messages=conversation,
|
| 509 |
temperature=temperature,
|
|
@@ -511,106 +579,155 @@ class TxAgent:
|
|
| 511 |
max_new_tokens=max_new_tokens, max_token=max_token)
|
| 512 |
|
| 513 |
def run_format_agent(self, message: str,
|
| 514 |
-
|
| 515 |
-
|
| 516 |
-
|
| 517 |
-
|
| 518 |
-
|
|
|
|
| 519 |
if '[FinalAnswer]' in answer:
|
| 520 |
possible_final_answer = answer.split("[FinalAnswer]")[-1]
|
| 521 |
elif "\n\n" in answer:
|
| 522 |
possible_final_answer = answer.split("\n\n")[-1]
|
| 523 |
else:
|
| 524 |
possible_final_answer = answer.strip()
|
| 525 |
-
if len(possible_final_answer) == 1
|
| 526 |
-
|
| 527 |
-
|
| 528 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 529 |
conversation = []
|
| 530 |
-
format_prompt = "You are helpful assistant to transform the answer to 'A', 'B', 'C', 'D'."
|
| 531 |
conversation = self.set_system_prompt(conversation, format_prompt)
|
| 532 |
-
conversation.append({"role": "user", "content": message +
|
|
|
|
| 533 |
return self.llm_infer(messages=conversation,
|
| 534 |
temperature=temperature,
|
| 535 |
tools=None,
|
| 536 |
max_new_tokens=max_new_tokens, max_token=max_token)
|
| 537 |
|
| 538 |
def run_summary_agent(self, thought_calls: str,
|
| 539 |
-
|
| 540 |
-
|
| 541 |
-
|
| 542 |
-
|
| 543 |
-
|
| 544 |
generate_tool_result_summary_training_prompt = """Thought and function calls:
|
| 545 |
{thought_calls}
|
| 546 |
Function calls' responses:
|
| 547 |
\"\"\"
|
| 548 |
{function_response}
|
| 549 |
\"\"\"
|
| 550 |
-
|
| 551 |
-
|
| 552 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 553 |
output = self.llm_infer(messages=conversation,
|
| 554 |
temperature=temperature,
|
| 555 |
tools=None,
|
| 556 |
max_new_tokens=max_new_tokens, max_token=max_token)
|
|
|
|
| 557 |
if '[' in output:
|
| 558 |
output = output.split('[')[0]
|
| 559 |
return output
|
| 560 |
|
| 561 |
def function_result_summary(self, input_list, status, enable_summary):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 562 |
if 'tool_call_step' not in status:
|
| 563 |
status['tool_call_step'] = 0
|
|
|
|
| 564 |
for idx in range(len(input_list)):
|
| 565 |
pos_id = len(input_list)-idx-1
|
| 566 |
-
if input_list[pos_id]['role'] == 'assistant'
|
| 567 |
-
if '
|
| 568 |
-
|
|
|
|
| 569 |
break
|
| 570 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 571 |
if not enable_summary:
|
| 572 |
return status
|
|
|
|
| 573 |
if 'summarized_index' not in status:
|
| 574 |
status['summarized_index'] = 0
|
|
|
|
| 575 |
if 'summarized_step' not in status:
|
| 576 |
status['summarized_step'] = 0
|
|
|
|
| 577 |
if 'previous_length' not in status:
|
| 578 |
status['previous_length'] = 0
|
|
|
|
| 579 |
if 'history' not in status:
|
| 580 |
status['history'] = []
|
|
|
|
| 581 |
function_response = ''
|
| 582 |
-
idx =
|
| 583 |
current_summarized_index = status['summarized_index']
|
|
|
|
| 584 |
status['history'].append(self.summary_mode == 'step' and status['summarized_step']
|
| 585 |
< status['step']-status['tool_call_step']-self.summary_skip_last_k)
|
|
|
|
|
|
|
| 586 |
while idx < len(input_list):
|
| 587 |
if (self.summary_mode == 'step' and status['summarized_step'] < status['step']-status['tool_call_step']-self.summary_skip_last_k) or (self.summary_mode == 'length' and status['previous_length'] > self.summary_context_length):
|
|
|
|
| 588 |
if input_list[idx]['role'] == 'assistant':
|
| 589 |
if 'Tool_RAG' in str(input_list[idx]['tool_calls']):
|
| 590 |
this_thought_calls = None
|
| 591 |
else:
|
| 592 |
if len(function_response) != 0:
|
| 593 |
-
|
| 594 |
status['summarized_step'] += 1
|
| 595 |
result_summary = self.run_summary_agent(
|
| 596 |
thought_calls=this_thought_calls,
|
| 597 |
function_response=function_response,
|
| 598 |
temperature=0.1,
|
| 599 |
max_new_tokens=1024,
|
| 600 |
-
max_token=99999
|
| 601 |
-
|
|
|
|
|
|
|
|
|
|
| 602 |
status['summarized_index'] = last_call_idx + 2
|
| 603 |
idx += 1
|
|
|
|
| 604 |
last_call_idx = idx
|
| 605 |
-
this_thought_calls = input_list[idx]['content'] +
|
|
|
|
| 606 |
function_response = ''
|
|
|
|
| 607 |
elif input_list[idx]['role'] == 'tool' and this_thought_calls is not None:
|
| 608 |
function_response += input_list[idx]['content']
|
| 609 |
del input_list[idx]
|
| 610 |
idx -= 1
|
|
|
|
| 611 |
else:
|
| 612 |
break
|
| 613 |
idx += 1
|
|
|
|
| 614 |
if len(function_response) != 0:
|
| 615 |
status['summarized_step'] += 1
|
| 616 |
result_summary = self.run_summary_agent(
|
|
@@ -618,20 +735,30 @@ Generate one summarized sentence about "function calls' responses" with necessar
|
|
| 618 |
function_response=function_response,
|
| 619 |
temperature=0.1,
|
| 620 |
max_new_tokens=1024,
|
| 621 |
-
max_token=99999
|
|
|
|
|
|
|
| 622 |
tool_calls = json.loads(input_list[last_call_idx]['tool_calls'])
|
| 623 |
for tool_call in tool_calls:
|
| 624 |
del tool_call['call_id']
|
| 625 |
input_list[last_call_idx]['tool_calls'] = json.dumps(tool_calls)
|
| 626 |
-
input_list.insert(
|
|
|
|
| 627 |
status['summarized_index'] = last_call_idx + 2
|
|
|
|
| 628 |
return status
|
| 629 |
|
|
|
|
|
|
|
|
|
|
| 630 |
def update_parameters(self, **kwargs):
|
| 631 |
for key, value in kwargs.items():
|
| 632 |
if hasattr(self, key):
|
| 633 |
setattr(self, key, value)
|
| 634 |
-
|
|
|
|
|
|
|
|
|
|
| 635 |
return updated_attributes
|
| 636 |
|
| 637 |
def run_gradio_chat(self, message: str,
|
|
@@ -645,53 +772,192 @@ Generate one summarized sentence about "function calls' responses" with necessar
|
|
| 645 |
seed: int = None,
|
| 646 |
call_agent_level: int = 0,
|
| 647 |
sub_agent_task: str = None,
|
| 648 |
-
uploaded_files: list = None):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 649 |
logger.debug(f"[TxAgent] Chat started, message: {message[:100]}...")
|
| 650 |
print("\033[1;32;40m[TxAgent] Chat started\033[0m")
|
|
|
|
| 651 |
if not message or len(message.strip()) < 5:
|
| 652 |
yield "Please provide a valid message or upload files to analyze."
|
| 653 |
return "Invalid input."
|
|
|
|
| 654 |
if message.startswith("[\U0001f9f0 Tool_RAG") or message.startswith("⚒️"):
|
| 655 |
return ""
|
| 656 |
-
|
| 657 |
-
|
| 658 |
-
|
| 659 |
-
|
| 660 |
-
|
| 661 |
-
|
| 662 |
-
|
| 663 |
-
|
| 664 |
-
|
| 665 |
-
|
| 666 |
-
|
| 667 |
-
|
| 668 |
-
|
| 669 |
-
|
| 670 |
-
|
| 671 |
-
|
| 672 |
-
|
| 673 |
-
|
| 674 |
-
|
| 675 |
-
|
| 676 |
-
|
| 677 |
-
|
| 678 |
-
|
| 679 |
-
|
| 680 |
-
|
| 681 |
-
|
| 682 |
-
|
| 683 |
-
|
| 684 |
-
|
| 685 |
-
|
| 686 |
-
|
| 687 |
-
|
| 688 |
-
|
| 689 |
-
|
| 690 |
-
|
| 691 |
-
|
| 692 |
-
|
| 693 |
-
|
| 694 |
-
|
| 695 |
-
|
| 696 |
-
|
| 697 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
from gradio import ChatMessage
|
| 13 |
from .toolrag import ToolRAGModel
|
| 14 |
import torch
|
| 15 |
+
# near the top of txagent.py
|
| 16 |
import logging
|
|
|
|
| 17 |
logger = logging.getLogger(__name__)
|
| 18 |
logging.basicConfig(level=logging.INFO)
|
| 19 |
|
| 20 |
from .utils import NoRepeatSentenceProcessor, ReasoningTraceChecker, tool_result_format
|
| 21 |
|
| 22 |
+
|
| 23 |
class TxAgent:
|
| 24 |
def __init__(self, model_name,
|
| 25 |
rag_model_name,
|
| 26 |
+
tool_files_dict=None, # None leads to the default tool files in ToolUniverse
|
| 27 |
+
enable_finish=True,
|
| 28 |
+
enable_rag=True,
|
| 29 |
enable_summary=False,
|
| 30 |
init_rag_num=0,
|
| 31 |
+
step_rag_num=10,
|
| 32 |
summary_mode='step',
|
| 33 |
summary_skip_last_k=0,
|
| 34 |
summary_context_length=None,
|
|
|
|
| 45 |
self.rag_model_name = rag_model_name
|
| 46 |
self.tool_files_dict = tool_files_dict
|
| 47 |
self.model = None
|
| 48 |
+
self.rag_model = ToolRAGModel(rag_model_name)
|
| 49 |
self.tooluniverse = None
|
| 50 |
+
# self.tool_desc = None
|
| 51 |
+
self.prompt_multi_step = "You are a helpful assistant that will solve problems through detailed, step-by-step reasoning and actions based on your reasoning. Typically, your actions will use the provided functions. You have access to the following functions."
|
| 52 |
self.self_prompt = "Strictly follow the instruction."
|
| 53 |
self.chat_prompt = "You are helpful assistant to chat with the user."
|
| 54 |
self.enable_finish = enable_finish
|
|
|
|
| 68 |
|
| 69 |
def init_model(self):
|
| 70 |
self.load_models()
|
| 71 |
+
self.load_tooluniverse()
|
| 72 |
+
self.load_tool_desc_embedding()
|
|
|
|
| 73 |
|
| 74 |
def print_self_values(self):
|
| 75 |
for attr, value in self.__dict__.items():
|
| 76 |
+
print(f"{attr}: {value}")
|
| 77 |
|
| 78 |
def load_models(self, model_name=None):
|
| 79 |
if model_name is not None:
|
| 80 |
if model_name == self.model_name:
|
| 81 |
return f"The model {model_name} is already loaded."
|
| 82 |
self.model_name = model_name
|
| 83 |
+
|
| 84 |
+
self.model = LLM(model=self.model_name)
|
| 85 |
self.chat_template = Template(self.model.get_tokenizer().chat_template)
|
| 86 |
self.tokenizer = self.model.get_tokenizer()
|
| 87 |
+
|
| 88 |
return f"Model {model_name} loaded successfully."
|
| 89 |
|
| 90 |
def load_tooluniverse(self):
|
|
|
|
|
|
|
|
|
|
| 91 |
self.tooluniverse = ToolUniverse(tool_files=self.tool_files_dict)
|
| 92 |
self.tooluniverse.load_tools()
|
| 93 |
special_tools = self.tooluniverse.prepare_tool_prompts(
|
|
|
|
| 95 |
self.special_tools_name = [tool['name'] for tool in special_tools]
|
| 96 |
|
| 97 |
def load_tool_desc_embedding(self):
|
| 98 |
+
self.rag_model.load_tool_desc_embedding(self.tooluniverse)
|
|
|
|
| 99 |
|
| 100 |
def rag_infer(self, query, top_k=5):
|
|
|
|
|
|
|
| 101 |
return self.rag_model.rag_infer(query, top_k)
|
| 102 |
|
| 103 |
def initialize_tools_prompt(self, call_agent, call_agent_level, message):
|
| 104 |
picked_tools_prompt = []
|
|
|
|
|
|
|
| 105 |
picked_tools_prompt = self.add_special_tools(
|
| 106 |
picked_tools_prompt, call_agent=call_agent)
|
| 107 |
if call_agent:
|
| 108 |
call_agent_level += 1
|
| 109 |
if call_agent_level >= 2:
|
| 110 |
call_agent = False
|
| 111 |
+
|
| 112 |
if not call_agent:
|
| 113 |
picked_tools_prompt += self.tool_RAG(
|
| 114 |
message=message, rag_num=self.init_rag_num)
|
|
|
|
| 117 |
def initialize_conversation(self, message, conversation=None, history=None):
|
| 118 |
if conversation is None:
|
| 119 |
conversation = []
|
| 120 |
+
|
| 121 |
conversation = self.set_system_prompt(
|
| 122 |
conversation, self.prompt_multi_step)
|
| 123 |
if history is not None:
|
| 124 |
if len(history) == 0:
|
| 125 |
conversation = []
|
| 126 |
+
print("clear conversation successfully")
|
| 127 |
else:
|
| 128 |
for i in range(len(history)):
|
| 129 |
if history[i]['role'] == 'user':
|
|
|
|
| 135 |
if i == len(history)-1 and history[i]['role'] == 'assistant':
|
| 136 |
conversation.append(
|
| 137 |
{"role": "assistant", "content": history[i]['content']})
|
| 138 |
+
|
| 139 |
conversation.append({"role": "user", "content": message})
|
| 140 |
+
|
| 141 |
return conversation
|
| 142 |
|
| 143 |
def tool_RAG(self, message=None,
|
|
|
|
| 145 |
existing_tools_prompt=[],
|
| 146 |
rag_num=5,
|
| 147 |
return_call_result=False):
|
| 148 |
+
extra_factor = 30 # Factor to retrieve more than rag_num
|
|
|
|
|
|
|
| 149 |
if picked_tool_names is None:
|
| 150 |
assert picked_tool_names is not None or message is not None
|
| 151 |
picked_tool_names = self.rag_infer(
|
| 152 |
message, top_k=rag_num*extra_factor)
|
| 153 |
+
|
| 154 |
+
picked_tool_names_no_special = []
|
| 155 |
+
for tool in picked_tool_names:
|
| 156 |
+
if tool not in self.special_tools_name:
|
| 157 |
+
picked_tool_names_no_special.append(tool)
|
| 158 |
picked_tool_names_no_special = picked_tool_names_no_special[:rag_num]
|
| 159 |
picked_tool_names = picked_tool_names_no_special[:rag_num]
|
| 160 |
+
|
| 161 |
picked_tools = self.tooluniverse.get_tool_by_name(picked_tool_names)
|
| 162 |
+
picked_tools_prompt = self.tooluniverse.prepare_tool_prompts(
|
| 163 |
+
picked_tools)
|
| 164 |
if return_call_result:
|
| 165 |
return picked_tools_prompt, picked_tool_names
|
| 166 |
return picked_tools_prompt
|
| 167 |
|
| 168 |
def add_special_tools(self, tools, call_agent=False):
|
| 169 |
+
if self.enable_finish:
|
| 170 |
+
tools.append(self.tooluniverse.get_one_tool_by_one_name(
|
| 171 |
+
'Finish', return_prompt=True))
|
| 172 |
+
print("Finish tool is added")
|
| 173 |
+
if call_agent:
|
| 174 |
+
tools.append(self.tooluniverse.get_one_tool_by_one_name(
|
| 175 |
+
'CallAgent', return_prompt=True))
|
| 176 |
+
print("CallAgent tool is added")
|
| 177 |
+
else:
|
| 178 |
+
if self.enable_rag:
|
| 179 |
+
tools.append(self.tooluniverse.get_one_tool_by_one_name(
|
| 180 |
+
'Tool_RAG', return_prompt=True))
|
| 181 |
+
print("Tool_RAG tool is added")
|
| 182 |
+
|
| 183 |
+
if self.additional_default_tools is not None:
|
| 184 |
+
for each_tool_name in self.additional_default_tools:
|
| 185 |
+
tool_prompt = self.tooluniverse.get_one_tool_by_one_name(
|
| 186 |
+
each_tool_name, return_prompt=True)
|
| 187 |
+
if tool_prompt is not None:
|
| 188 |
+
print(f"{each_tool_name} tool is added")
|
| 189 |
+
tools.append(tool_prompt)
|
| 190 |
return tools
|
| 191 |
|
| 192 |
def add_finish_tools(self, tools):
|
| 193 |
+
tools.append(self.tooluniverse.get_one_tool_by_one_name(
|
| 194 |
+
'Finish', return_prompt=True))
|
| 195 |
+
print("Finish tool is added")
|
|
|
|
| 196 |
return tools
|
| 197 |
|
| 198 |
def set_system_prompt(self, conversation, sys_prompt):
|
| 199 |
if len(conversation) == 0:
|
| 200 |
+
conversation.append(
|
| 201 |
+
{"role": "system", "content": sys_prompt})
|
| 202 |
else:
|
| 203 |
conversation[0] = {"role": "system", "content": sys_prompt}
|
| 204 |
return conversation
|
|
|
|
| 210 |
call_agent=False,
|
| 211 |
call_agent_level=None,
|
| 212 |
temperature=None):
|
| 213 |
+
|
| 214 |
+
function_call_json, message = self.tooluniverse.extract_function_call_json(
|
| 215 |
+
fcall_str, return_message=return_message, verbose=False)
|
| 216 |
call_results = []
|
| 217 |
special_tool_call = ''
|
| 218 |
if function_call_json is not None:
|
| 219 |
if isinstance(function_call_json, list):
|
| 220 |
for i in range(len(function_call_json)):
|
| 221 |
+
print("\033[94mTool Call:\033[0m", function_call_json[i])
|
| 222 |
if function_call_json[i]["name"] == 'Finish':
|
| 223 |
special_tool_call = 'Finish'
|
| 224 |
break
|
|
|
|
| 246 |
else:
|
| 247 |
call_result = call_result.split('[FinalAnswer]')[-1].strip()
|
| 248 |
else:
|
| 249 |
+
call_result = "Error: The CallAgent has been disabled. Please proceed with your reasoning process to solve this question."
|
| 250 |
else:
|
| 251 |
+
call_result = self.tooluniverse.run_one_function(
|
| 252 |
+
function_call_json[i])
|
| 253 |
+
|
| 254 |
call_id = self.tooluniverse.call_id_gen()
|
| 255 |
function_call_json[i]["call_id"] = call_id
|
| 256 |
+
print("\033[94mTool Call Result:\033[0m", call_result)
|
| 257 |
call_results.append({
|
| 258 |
"role": "tool",
|
| 259 |
"content": json.dumps({"tool_name": function_call_json[i]["name"], "content": call_result, "call_id": call_id})
|
|
|
|
| 261 |
else:
|
| 262 |
call_results.append({
|
| 263 |
"role": "tool",
|
| 264 |
+
"content": json.dumps({"content": "Not a valid function call, please check the function call format."})
|
| 265 |
})
|
| 266 |
+
|
| 267 |
revised_messages = [{
|
| 268 |
"role": "assistant",
|
| 269 |
"content": message.strip(),
|
| 270 |
"tool_calls": json.dumps(function_call_json)
|
| 271 |
}] + call_results
|
| 272 |
+
|
| 273 |
+
# Yield the final result.
|
| 274 |
return revised_messages, existing_tools_prompt, special_tool_call
|
| 275 |
|
| 276 |
def run_function_call_stream(self, fcall_str,
|
| 277 |
+
return_message=False,
|
| 278 |
+
existing_tools_prompt=None,
|
| 279 |
+
message_for_call_agent=None,
|
| 280 |
+
call_agent=False,
|
| 281 |
+
call_agent_level=None,
|
| 282 |
+
temperature=None,
|
| 283 |
+
return_gradio_history=True):
|
| 284 |
+
|
| 285 |
+
function_call_json, message = self.tooluniverse.extract_function_call_json(
|
| 286 |
+
fcall_str, return_message=return_message, verbose=False)
|
|
|
|
| 287 |
call_results = []
|
| 288 |
special_tool_call = ''
|
| 289 |
+
if return_gradio_history:
|
| 290 |
+
gradio_history = []
|
| 291 |
if function_call_json is not None:
|
| 292 |
if isinstance(function_call_json, list):
|
| 293 |
for i in range(len(function_call_json)):
|
|
|
|
| 315 |
"\nYou must follow the following plan to answer the question: " +
|
| 316 |
str(solution_plan)
|
| 317 |
)
|
| 318 |
+
sub_agent_task = "Sub TxAgent plan: " + \
|
| 319 |
+
str(solution_plan)
|
| 320 |
call_result = yield from self.run_gradio_chat(
|
| 321 |
full_message, history=[], temperature=temperature,
|
| 322 |
max_new_tokens=1024, max_token=99999,
|
| 323 |
call_agent=False, call_agent_level=call_agent_level,
|
| 324 |
conversation=None,
|
| 325 |
sub_agent_task=sub_agent_task)
|
| 326 |
+
|
| 327 |
if call_result is not None and isinstance(call_result, str):
|
| 328 |
call_result = call_result.split('[FinalAnswer]')[-1]
|
| 329 |
else:
|
| 330 |
call_result = "⚠️ No content returned from sub-agent."
|
| 331 |
else:
|
| 332 |
+
call_result = "Error: The CallAgent has been disabled. Please proceed with your reasoning process to solve this question."
|
| 333 |
else:
|
| 334 |
+
call_result = self.tooluniverse.run_one_function(
|
| 335 |
+
function_call_json[i])
|
| 336 |
+
|
| 337 |
call_id = self.tooluniverse.call_id_gen()
|
| 338 |
function_call_json[i]["call_id"] = call_id
|
| 339 |
call_results.append({
|
|
|
|
| 350 |
else:
|
| 351 |
call_results.append({
|
| 352 |
"role": "tool",
|
| 353 |
+
"content": json.dumps({"content": "Not a valid function call, please check the function call format."})
|
| 354 |
})
|
| 355 |
+
|
| 356 |
revised_messages = [{
|
| 357 |
"role": "assistant",
|
| 358 |
"content": message.strip(),
|
| 359 |
"tool_calls": json.dumps(function_call_json)
|
| 360 |
}] + call_results
|
| 361 |
+
|
| 362 |
+
if return_gradio_history:
|
| 363 |
+
return revised_messages, existing_tools_prompt, special_tool_call, gradio_history
|
| 364 |
+
else:
|
| 365 |
+
return revised_messages, existing_tools_prompt, special_tool_call
|
| 366 |
+
|
| 367 |
|
| 368 |
def get_answer_based_on_unfinished_reasoning(self, conversation, temperature, max_new_tokens, max_token, outputs=None):
|
| 369 |
+
if conversation[-1]['role'] == 'assisant':
|
| 370 |
+
conversation.append(
|
| 371 |
+
{'role': 'tool', 'content': 'Errors happen during the function call, please come up with the final answer with the current information.'})
|
| 372 |
+
finish_tools_prompt = self.add_finish_tools([])
|
| 373 |
+
|
| 374 |
last_outputs_str = self.llm_infer(messages=conversation,
|
| 375 |
+
temperature=temperature,
|
| 376 |
+
tools=finish_tools_prompt,
|
| 377 |
+
output_begin_string='Since I cannot continue reasoning, I will provide the final answer based on the current information and general knowledge.\n\n[FinalAnswer]',
|
| 378 |
+
skip_special_tokens=True,
|
| 379 |
+
max_new_tokens=max_new_tokens, max_token=max_token)
|
| 380 |
+
print(last_outputs_str)
|
| 381 |
return last_outputs_str
|
| 382 |
|
| 383 |
def run_multistep_agent(self, message: str,
|
|
|
|
| 387 |
max_round: int = 20,
|
| 388 |
call_agent=False,
|
| 389 |
call_agent_level=0) -> str:
|
| 390 |
+
"""
|
| 391 |
+
Generate a streaming response using the llama3-8b model.
|
| 392 |
+
Args:
|
| 393 |
+
message (str): The input message.
|
| 394 |
+
temperature (float): The temperature for generating the response.
|
| 395 |
+
max_new_tokens (int): The maximum number of new tokens to generate.
|
| 396 |
+
Returns:
|
| 397 |
+
str: The generated response.
|
| 398 |
+
"""
|
| 399 |
+
print("\033[1;32;40mstart\033[0m")
|
| 400 |
picked_tools_prompt, call_agent_level = self.initialize_tools_prompt(
|
| 401 |
call_agent, call_agent_level, message)
|
| 402 |
conversation = self.initialize_conversation(message)
|
| 403 |
+
|
| 404 |
outputs = []
|
| 405 |
last_outputs = []
|
| 406 |
next_round = True
|
|
|
|
| 409 |
token_overflow = False
|
| 410 |
enable_summary = False
|
| 411 |
last_status = {}
|
| 412 |
+
|
| 413 |
if self.enable_checker:
|
| 414 |
checker = ReasoningTraceChecker(message, conversation)
|
| 415 |
try:
|
|
|
|
| 423 |
call_agent=call_agent,
|
| 424 |
call_agent_level=call_agent_level,
|
| 425 |
temperature=temperature)
|
| 426 |
+
|
| 427 |
if special_tool_call == 'Finish':
|
| 428 |
next_round = False
|
| 429 |
conversation.extend(function_call_messages)
|
| 430 |
+
if isinstance(function_call_messages[0]['content'], types.GeneratorType):
|
| 431 |
+
function_call_messages[0]['content'] = next(
|
| 432 |
+
function_call_messages[0]['content'])
|
| 433 |
content = function_call_messages[0]['content']
|
| 434 |
if content is None:
|
| 435 |
+
return "❌ No content returned after Finish tool call."
|
| 436 |
return content.split('[FinalAnswer]')[-1]
|
| 437 |
+
|
| 438 |
if (self.enable_summary or token_overflow) and not call_agent:
|
| 439 |
+
if token_overflow:
|
| 440 |
+
print("token_overflow, using summary")
|
| 441 |
enable_summary = True
|
| 442 |
last_status = self.function_result_summary(
|
| 443 |
conversation, status=last_status, enable_summary=enable_summary)
|
| 444 |
+
|
| 445 |
+
if function_call_messages is not None:
|
| 446 |
conversation.extend(function_call_messages)
|
| 447 |
+
outputs.append(tool_result_format(
|
| 448 |
+
function_call_messages))
|
| 449 |
else:
|
| 450 |
next_round = False
|
| 451 |
+
conversation.extend(
|
| 452 |
+
[{"role": "assistant", "content": ''.join(last_outputs)}])
|
| 453 |
return ''.join(last_outputs).replace("</s>", "")
|
| 454 |
if self.enable_checker:
|
| 455 |
good_status, wrong_info = checker.check_conversation()
|
| 456 |
if not good_status:
|
| 457 |
+
next_round = False
|
| 458 |
+
print(
|
| 459 |
+
"Internal error in reasoning: " + wrong_info)
|
| 460 |
break
|
| 461 |
last_outputs = []
|
| 462 |
outputs.append("### TxAgent:\n")
|
| 463 |
+
last_outputs_str, token_overflow = self.llm_infer(messages=conversation,
|
| 464 |
+
temperature=temperature,
|
| 465 |
+
tools=picked_tools_prompt,
|
| 466 |
+
skip_special_tokens=False,
|
| 467 |
+
max_new_tokens=max_new_tokens, max_token=max_token,
|
| 468 |
+
check_token_status=True)
|
|
|
|
|
|
|
| 469 |
if last_outputs_str is None:
|
| 470 |
+
print("The number of tokens exceeds the maximum limit.")
|
| 471 |
if self.force_finish:
|
| 472 |
+
return self.get_answer_based_on_unfinished_reasoning(conversation, temperature, max_new_tokens, max_token)
|
| 473 |
+
else:
|
| 474 |
+
return "❌ Token limit exceeded — no further steps possible."
|
| 475 |
+
else:
|
| 476 |
+
last_outputs.append(last_outputs_str)
|
| 477 |
if max_round == current_round:
|
| 478 |
+
print("The number of rounds exceeds the maximum limit!")
|
| 479 |
if self.force_finish:
|
| 480 |
+
return self.get_answer_based_on_unfinished_reasoning(conversation, temperature, max_new_tokens, max_token)
|
| 481 |
+
else:
|
| 482 |
+
return None
|
| 483 |
+
|
| 484 |
except Exception as e:
|
| 485 |
+
print(f"Error: {e}")
|
| 486 |
if self.force_finish:
|
| 487 |
+
return self.get_answer_based_on_unfinished_reasoning(conversation, temperature, max_new_tokens, max_token)
|
| 488 |
+
else:
|
| 489 |
+
return None
|
| 490 |
|
| 491 |
def build_logits_processor(self, messages, llm):
|
| 492 |
+
# Use the tokenizer from the LLM instance.
|
| 493 |
tokenizer = llm.get_tokenizer()
|
| 494 |
if self.avoid_repeat and len(messages) > 2:
|
| 495 |
assistant_messages = []
|
|
|
|
| 498 |
assistant_messages.append(messages[-i]['content'])
|
| 499 |
if len(assistant_messages) == 2:
|
| 500 |
break
|
| 501 |
+
forbidden_ids = [tokenizer.encode(
|
| 502 |
+
msg, add_special_tokens=False) for msg in assistant_messages]
|
| 503 |
+
return [NoRepeatSentenceProcessor(forbidden_ids, 5)]
|
| 504 |
+
else:
|
| 505 |
+
return None
|
| 506 |
|
| 507 |
def llm_infer(self, messages, temperature=0.1, tools=None,
|
| 508 |
output_begin_string=None, max_new_tokens=2048,
|
| 509 |
max_token=None, skip_special_tokens=True,
|
| 510 |
+
model=None, tokenizer=None, terminators=None, seed=None, check_token_status=False):
|
| 511 |
+
|
| 512 |
if model is None:
|
| 513 |
model = self.model
|
| 514 |
+
|
| 515 |
logits_processor = self.build_logits_processor(messages, model)
|
| 516 |
sampling_params = SamplingParams(
|
| 517 |
temperature=temperature,
|
| 518 |
max_tokens=max_new_tokens,
|
| 519 |
+
|
| 520 |
seed=seed if seed is not None else self.seed,
|
| 521 |
)
|
| 522 |
+
|
| 523 |
prompt = self.chat_template.render(
|
| 524 |
messages=messages, tools=tools, add_generation_prompt=True)
|
| 525 |
if output_begin_string is not None:
|
| 526 |
prompt += output_begin_string
|
| 527 |
+
|
| 528 |
if check_token_status and max_token is not None:
|
| 529 |
token_overflow = False
|
| 530 |
+
num_input_tokens = len(self.tokenizer.encode(
|
| 531 |
+
prompt, return_tensors="pt")[0])
|
| 532 |
+
if max_token is not None:
|
| 533 |
+
if num_input_tokens > max_token:
|
| 534 |
+
torch.cuda.empty_cache()
|
| 535 |
+
gc.collect()
|
| 536 |
+
print("Number of input tokens before inference:",
|
| 537 |
+
num_input_tokens)
|
| 538 |
+
logger.info(
|
| 539 |
+
"The number of tokens exceeds the maximum limit!!!!")
|
| 540 |
+
token_overflow = True
|
| 541 |
+
return None, token_overflow
|
| 542 |
+
output = model.generate(
|
| 543 |
+
prompt,
|
| 544 |
+
sampling_params=sampling_params,
|
| 545 |
+
)
|
| 546 |
output = output[0].outputs[0].text
|
| 547 |
+
print("\033[92m" + output + "\033[0m")
|
| 548 |
if check_token_status and max_token is not None:
|
| 549 |
return output, token_overflow
|
| 550 |
+
|
| 551 |
return output
|
| 552 |
|
| 553 |
def run_self_agent(self, message: str,
|
| 554 |
+
temperature: float,
|
| 555 |
+
max_new_tokens: int,
|
| 556 |
+
max_token: int) -> str:
|
| 557 |
+
|
| 558 |
+
print("\033[1;32;40mstart self agent\033[0m")
|
| 559 |
+
conversation = []
|
| 560 |
+
conversation = self.set_system_prompt(conversation, self.self_prompt)
|
| 561 |
conversation.append({"role": "user", "content": message})
|
| 562 |
return self.llm_infer(messages=conversation,
|
| 563 |
temperature=temperature,
|
|
|
|
| 568 |
temperature: float,
|
| 569 |
max_new_tokens: int,
|
| 570 |
max_token: int) -> str:
|
| 571 |
+
|
| 572 |
+
print("\033[1;32;40mstart chat agent\033[0m")
|
| 573 |
+
conversation = []
|
| 574 |
+
conversation = self.set_system_prompt(conversation, self.chat_prompt)
|
| 575 |
conversation.append({"role": "user", "content": message})
|
| 576 |
return self.llm_infer(messages=conversation,
|
| 577 |
temperature=temperature,
|
|
|
|
| 579 |
max_new_tokens=max_new_tokens, max_token=max_token)
|
| 580 |
|
| 581 |
def run_format_agent(self, message: str,
|
| 582 |
+
answer: str,
|
| 583 |
+
temperature: float,
|
| 584 |
+
max_new_tokens: int,
|
| 585 |
+
max_token: int) -> str:
|
| 586 |
+
|
| 587 |
+
print("\033[1;32;40mstart format agent\033[0m")
|
| 588 |
if '[FinalAnswer]' in answer:
|
| 589 |
possible_final_answer = answer.split("[FinalAnswer]")[-1]
|
| 590 |
elif "\n\n" in answer:
|
| 591 |
possible_final_answer = answer.split("\n\n")[-1]
|
| 592 |
else:
|
| 593 |
possible_final_answer = answer.strip()
|
| 594 |
+
if len(possible_final_answer) == 1:
|
| 595 |
+
choice = possible_final_answer[0]
|
| 596 |
+
if choice in ['A', 'B', 'C', 'D', 'E']:
|
| 597 |
+
return choice
|
| 598 |
+
elif len(possible_final_answer) > 1:
|
| 599 |
+
if possible_final_answer[1] == ':':
|
| 600 |
+
choice = possible_final_answer[0]
|
| 601 |
+
if choice in ['A', 'B', 'C', 'D', 'E']:
|
| 602 |
+
print("choice", choice)
|
| 603 |
+
return choice
|
| 604 |
+
|
| 605 |
conversation = []
|
| 606 |
+
format_prompt = f"You are helpful assistant to transform the answer of agent to the final answer of 'A', 'B', 'C', 'D'."
|
| 607 |
conversation = self.set_system_prompt(conversation, format_prompt)
|
| 608 |
+
conversation.append({"role": "user", "content": message +
|
| 609 |
+
"\nThe final answer of agent:" + answer + "\n The answer is (must be a letter):"})
|
| 610 |
return self.llm_infer(messages=conversation,
|
| 611 |
temperature=temperature,
|
| 612 |
tools=None,
|
| 613 |
max_new_tokens=max_new_tokens, max_token=max_token)
|
| 614 |
|
| 615 |
def run_summary_agent(self, thought_calls: str,
|
| 616 |
+
function_response: str,
|
| 617 |
+
temperature: float,
|
| 618 |
+
max_new_tokens: int,
|
| 619 |
+
max_token: int) -> str:
|
| 620 |
+
print("\033[1;32;40mSummarized Tool Result:\033[0m")
|
| 621 |
generate_tool_result_summary_training_prompt = """Thought and function calls:
|
| 622 |
{thought_calls}
|
| 623 |
Function calls' responses:
|
| 624 |
\"\"\"
|
| 625 |
{function_response}
|
| 626 |
\"\"\"
|
| 627 |
+
Based on the Thought and function calls, and the function calls' responses, you need to generate a summary of the function calls' responses that fulfills the requirements of the thought. The summary MUST BE ONE sentence and include all necessary information.
|
| 628 |
+
Directly respond with the summarized sentence of the function calls' responses only.
|
| 629 |
+
Generate **one summarized sentence** about "function calls' responses" with necessary information, and respond with a string:
|
| 630 |
+
""".format(thought_calls=thought_calls, function_response=function_response)
|
| 631 |
+
conversation = []
|
| 632 |
+
conversation.append(
|
| 633 |
+
{"role": "user", "content": generate_tool_result_summary_training_prompt})
|
| 634 |
output = self.llm_infer(messages=conversation,
|
| 635 |
temperature=temperature,
|
| 636 |
tools=None,
|
| 637 |
max_new_tokens=max_new_tokens, max_token=max_token)
|
| 638 |
+
|
| 639 |
if '[' in output:
|
| 640 |
output = output.split('[')[0]
|
| 641 |
return output
|
| 642 |
|
| 643 |
def function_result_summary(self, input_list, status, enable_summary):
|
| 644 |
+
"""
|
| 645 |
+
Processes the input list, extracting information from sequences of 'user', 'tool', 'assistant' roles.
|
| 646 |
+
Supports 'length' and 'step' modes, and skips the last 'k' groups.
|
| 647 |
+
Parameters:
|
| 648 |
+
input_list (list): A list of dictionaries containing role and other information.
|
| 649 |
+
summary_skip_last_k (int): Number of groups to skip from the end. Defaults to 0.
|
| 650 |
+
summary_context_length (int): The context length threshold for the 'length' mode.
|
| 651 |
+
last_processed_index (tuple or int): The last processed index.
|
| 652 |
+
Returns:
|
| 653 |
+
list: A list of extracted information from valid sequences.
|
| 654 |
+
"""
|
| 655 |
if 'tool_call_step' not in status:
|
| 656 |
status['tool_call_step'] = 0
|
| 657 |
+
|
| 658 |
for idx in range(len(input_list)):
|
| 659 |
pos_id = len(input_list)-idx-1
|
| 660 |
+
if input_list[pos_id]['role'] == 'assistant':
|
| 661 |
+
if 'tool_calls' in input_list[pos_id]:
|
| 662 |
+
if 'Tool_RAG' in str(input_list[pos_id]['tool_calls']):
|
| 663 |
+
status['tool_call_step'] += 1
|
| 664 |
break
|
| 665 |
+
|
| 666 |
+
if 'step' in status:
|
| 667 |
+
status['step'] += 1
|
| 668 |
+
else:
|
| 669 |
+
status['step'] = 0
|
| 670 |
+
|
| 671 |
if not enable_summary:
|
| 672 |
return status
|
| 673 |
+
|
| 674 |
if 'summarized_index' not in status:
|
| 675 |
status['summarized_index'] = 0
|
| 676 |
+
|
| 677 |
if 'summarized_step' not in status:
|
| 678 |
status['summarized_step'] = 0
|
| 679 |
+
|
| 680 |
if 'previous_length' not in status:
|
| 681 |
status['previous_length'] = 0
|
| 682 |
+
|
| 683 |
if 'history' not in status:
|
| 684 |
status['history'] = []
|
| 685 |
+
|
| 686 |
function_response = ''
|
| 687 |
+
idx = 0
|
| 688 |
current_summarized_index = status['summarized_index']
|
| 689 |
+
|
| 690 |
status['history'].append(self.summary_mode == 'step' and status['summarized_step']
|
| 691 |
< status['step']-status['tool_call_step']-self.summary_skip_last_k)
|
| 692 |
+
|
| 693 |
+
idx = current_summarized_index
|
| 694 |
while idx < len(input_list):
|
| 695 |
if (self.summary_mode == 'step' and status['summarized_step'] < status['step']-status['tool_call_step']-self.summary_skip_last_k) or (self.summary_mode == 'length' and status['previous_length'] > self.summary_context_length):
|
| 696 |
+
|
| 697 |
if input_list[idx]['role'] == 'assistant':
|
| 698 |
if 'Tool_RAG' in str(input_list[idx]['tool_calls']):
|
| 699 |
this_thought_calls = None
|
| 700 |
else:
|
| 701 |
if len(function_response) != 0:
|
| 702 |
+
print("internal summary")
|
| 703 |
status['summarized_step'] += 1
|
| 704 |
result_summary = self.run_summary_agent(
|
| 705 |
thought_calls=this_thought_calls,
|
| 706 |
function_response=function_response,
|
| 707 |
temperature=0.1,
|
| 708 |
max_new_tokens=1024,
|
| 709 |
+
max_token=99999
|
| 710 |
+
)
|
| 711 |
+
|
| 712 |
+
input_list.insert(
|
| 713 |
+
last_call_idx+1, {'role': 'tool', 'content': result_summary})
|
| 714 |
status['summarized_index'] = last_call_idx + 2
|
| 715 |
idx += 1
|
| 716 |
+
|
| 717 |
last_call_idx = idx
|
| 718 |
+
this_thought_calls = input_list[idx]['content'] + \
|
| 719 |
+
input_list[idx]['tool_calls']
|
| 720 |
function_response = ''
|
| 721 |
+
|
| 722 |
elif input_list[idx]['role'] == 'tool' and this_thought_calls is not None:
|
| 723 |
function_response += input_list[idx]['content']
|
| 724 |
del input_list[idx]
|
| 725 |
idx -= 1
|
| 726 |
+
|
| 727 |
else:
|
| 728 |
break
|
| 729 |
idx += 1
|
| 730 |
+
|
| 731 |
if len(function_response) != 0:
|
| 732 |
status['summarized_step'] += 1
|
| 733 |
result_summary = self.run_summary_agent(
|
|
|
|
| 735 |
function_response=function_response,
|
| 736 |
temperature=0.1,
|
| 737 |
max_new_tokens=1024,
|
| 738 |
+
max_token=99999
|
| 739 |
+
)
|
| 740 |
+
|
| 741 |
tool_calls = json.loads(input_list[last_call_idx]['tool_calls'])
|
| 742 |
for tool_call in tool_calls:
|
| 743 |
del tool_call['call_id']
|
| 744 |
input_list[last_call_idx]['tool_calls'] = json.dumps(tool_calls)
|
| 745 |
+
input_list.insert(
|
| 746 |
+
last_call_idx+1, {'role': 'tool', 'content': result_summary})
|
| 747 |
status['summarized_index'] = last_call_idx + 2
|
| 748 |
+
|
| 749 |
return status
|
| 750 |
|
| 751 |
+
# Following are Gradio related functions
|
| 752 |
+
|
| 753 |
+
# General update method that accepts any new arguments through kwargs
|
| 754 |
def update_parameters(self, **kwargs):
|
| 755 |
for key, value in kwargs.items():
|
| 756 |
if hasattr(self, key):
|
| 757 |
setattr(self, key, value)
|
| 758 |
+
|
| 759 |
+
# Return the updated attributes
|
| 760 |
+
updated_attributes = {key: value for key,
|
| 761 |
+
value in kwargs.items() if hasattr(self, key)}
|
| 762 |
return updated_attributes
|
| 763 |
|
| 764 |
def run_gradio_chat(self, message: str,
|
|
|
|
| 772 |
seed: int = None,
|
| 773 |
call_agent_level: int = 0,
|
| 774 |
sub_agent_task: str = None,
|
| 775 |
+
uploaded_files: list = None) -> str:
|
| 776 |
+
"""
|
| 777 |
+
Generate a streaming response using the loaded model.
|
| 778 |
+
Args:
|
| 779 |
+
message (str): The input message (with file content if uploaded).
|
| 780 |
+
history (list): The conversation history used by ChatInterface.
|
| 781 |
+
temperature (float): Sampling temperature.
|
| 782 |
+
max_new_tokens (int): Max new tokens.
|
| 783 |
+
max_token (int): Max total tokens allowed.
|
| 784 |
+
Returns:
|
| 785 |
+
str: Final assistant message.
|
| 786 |
+
"""
|
| 787 |
logger.debug(f"[TxAgent] Chat started, message: {message[:100]}...")
|
| 788 |
print("\033[1;32;40m[TxAgent] Chat started\033[0m")
|
| 789 |
+
|
| 790 |
if not message or len(message.strip()) < 5:
|
| 791 |
yield "Please provide a valid message or upload files to analyze."
|
| 792 |
return "Invalid input."
|
| 793 |
+
|
| 794 |
if message.startswith("[\U0001f9f0 Tool_RAG") or message.startswith("⚒️"):
|
| 795 |
return ""
|
| 796 |
+
|
| 797 |
+
outputs = []
|
| 798 |
+
outputs_str = ''
|
| 799 |
+
last_outputs = []
|
| 800 |
+
|
| 801 |
+
picked_tools_prompt, call_agent_level = self.initialize_tools_prompt(
|
| 802 |
+
call_agent,
|
| 803 |
+
call_agent_level,
|
| 804 |
+
message)
|
| 805 |
+
|
| 806 |
+
conversation = self.initialize_conversation(
|
| 807 |
+
message,
|
| 808 |
+
conversation=conversation,
|
| 809 |
+
history=history)
|
| 810 |
+
history = []
|
| 811 |
+
|
| 812 |
+
next_round = True
|
| 813 |
+
function_call_messages = []
|
| 814 |
+
current_round = 0
|
| 815 |
+
enable_summary = False
|
| 816 |
+
last_status = {}
|
| 817 |
+
token_overflow = False
|
| 818 |
+
|
| 819 |
+
if self.enable_checker:
|
| 820 |
+
checker = ReasoningTraceChecker(
|
| 821 |
+
message, conversation, init_index=len(conversation))
|
| 822 |
+
|
| 823 |
+
try:
|
| 824 |
+
while next_round and current_round < max_round:
|
| 825 |
+
current_round += 1
|
| 826 |
+
logger.debug(f"Round {current_round}, conversation length: {len(conversation)}")
|
| 827 |
+
|
| 828 |
+
if last_outputs:
|
| 829 |
+
function_call_messages, picked_tools_prompt, special_tool_call, current_gradio_history = yield from self.run_function_call_stream(
|
| 830 |
+
last_outputs, return_message=True,
|
| 831 |
+
existing_tools_prompt=picked_tools_prompt,
|
| 832 |
+
message_for_call_agent=message,
|
| 833 |
+
call_agent=call_agent,
|
| 834 |
+
call_agent_level=call_agent_level,
|
| 835 |
+
temperature=temperature)
|
| 836 |
+
|
| 837 |
+
history.extend(current_gradio_history)
|
| 838 |
+
|
| 839 |
+
if special_tool_call == 'Finish' and function_call_messages:
|
| 840 |
+
yield history
|
| 841 |
+
next_round = False
|
| 842 |
+
conversation.extend(function_call_messages)
|
| 843 |
+
return function_call_messages[0]['content']
|
| 844 |
+
|
| 845 |
+
elif special_tool_call in ['RequireClarification', 'DirectResponse']:
|
| 846 |
+
last_msg = history[-1] if history else ChatMessage(role="assistant", content="Response needed.")
|
| 847 |
+
history.append(ChatMessage(role="assistant", content=last_msg.content))
|
| 848 |
+
yield history
|
| 849 |
+
next_round = False
|
| 850 |
+
return last_msg.content
|
| 851 |
+
|
| 852 |
+
if (self.enable_summary or token_overflow) and not call_agent:
|
| 853 |
+
enable_summary = True
|
| 854 |
+
|
| 855 |
+
last_status = self.function_result_summary(
|
| 856 |
+
conversation, status=last_status,
|
| 857 |
+
enable_summary=enable_summary)
|
| 858 |
+
|
| 859 |
+
if function_call_messages:
|
| 860 |
+
conversation.extend(function_call_messages)
|
| 861 |
+
yield history
|
| 862 |
+
else:
|
| 863 |
+
next_round = False
|
| 864 |
+
conversation.append({"role": "assistant", "content": ''.join(last_outputs)})
|
| 865 |
+
return ''.join(last_outputs).replace("</s>", "")
|
| 866 |
+
|
| 867 |
+
if self.enable_checker:
|
| 868 |
+
good_status, wrong_info = checker.check_conversation()
|
| 869 |
+
if not good_status:
|
| 870 |
+
print("Checker flagged reasoning error: ", wrong_info)
|
| 871 |
+
break
|
| 872 |
+
|
| 873 |
+
last_outputs = []
|
| 874 |
+
last_outputs_str, token_overflow = self.llm_infer(
|
| 875 |
+
messages=conversation,
|
| 876 |
+
temperature=temperature,
|
| 877 |
+
tools=picked_tools_prompt,
|
| 878 |
+
skip_special_tokens=False,
|
| 879 |
+
max_new_tokens=max_new_tokens,
|
| 880 |
+
max_token=max_token,
|
| 881 |
+
seed=seed,
|
| 882 |
+
check_token_status=True)
|
| 883 |
+
|
| 884 |
+
logger.debug(f"llm_infer output: {last_outputs_str[:100] if last_outputs_str else None}, token_overflow: {token_overflow}")
|
| 885 |
+
|
| 886 |
+
if last_outputs_str is None:
|
| 887 |
+
logger.warning("llm_infer returned None due to token overflow")
|
| 888 |
+
if self.force_finish:
|
| 889 |
+
last_outputs_str = self.get_answer_based_on_unfinished_reasoning(
|
| 890 |
+
conversation, temperature, max_new_tokens, max_token)
|
| 891 |
+
history.append(ChatMessage(role="assistant", content=last_outputs_str.strip()))
|
| 892 |
+
yield history
|
| 893 |
+
return last_outputs_str
|
| 894 |
+
else:
|
| 895 |
+
error_msg = "Token limit exceeded. Please reduce input size or increase max_token."
|
| 896 |
+
history.append(ChatMessage(role="assistant", content=error_msg))
|
| 897 |
+
yield history
|
| 898 |
+
return error_msg
|
| 899 |
+
|
| 900 |
+
last_thought = last_outputs_str.split("[TOOL_CALLS]")[0]
|
| 901 |
+
|
| 902 |
+
for msg in history:
|
| 903 |
+
if msg.metadata is not None:
|
| 904 |
+
msg.metadata['status'] = 'done'
|
| 905 |
+
|
| 906 |
+
if '[FinalAnswer]' in last_thought:
|
| 907 |
+
parts = last_thought.split('[FinalAnswer]', 1)
|
| 908 |
+
if len(parts) == 2:
|
| 909 |
+
final_thought, final_answer = parts
|
| 910 |
+
else:
|
| 911 |
+
final_thought, final_answer = last_thought, ""
|
| 912 |
+
history.append(ChatMessage(role="assistant", content=final_thought.strip()))
|
| 913 |
+
yield history
|
| 914 |
+
history.append(ChatMessage(role="assistant", content="**🧠 Final Analysis:**\n" + final_answer.strip()))
|
| 915 |
+
yield history
|
| 916 |
+
else:
|
| 917 |
+
history.append(ChatMessage(role="assistant", content=last_thought))
|
| 918 |
+
yield history
|
| 919 |
+
|
| 920 |
+
last_outputs.append(last_outputs_str)
|
| 921 |
+
|
| 922 |
+
if next_round:
|
| 923 |
+
if self.force_finish:
|
| 924 |
+
last_outputs_str = self.get_answer_based_on_unfinished_reasoning(
|
| 925 |
+
conversation, temperature, max_new_tokens, max_token)
|
| 926 |
+
if '[FinalAnswer]' in last_outputs_str:
|
| 927 |
+
parts = last_outputs_str.split('[FinalAnswer]', 1)
|
| 928 |
+
if len(parts) == 2:
|
| 929 |
+
final_thought, final_answer = parts
|
| 930 |
+
else:
|
| 931 |
+
final_thought, final_answer = last_outputs_str, ""
|
| 932 |
+
history.append(ChatMessage(role="assistant", content=final_thought.strip()))
|
| 933 |
+
yield history
|
| 934 |
+
history.append(ChatMessage(role="assistant", content="**🧠 Final Analysis:**\n" + final_answer.strip()))
|
| 935 |
+
yield history
|
| 936 |
+
else:
|
| 937 |
+
history.append(ChatMessage(role="assistant", content=last_outputs_str.strip()))
|
| 938 |
+
yield history
|
| 939 |
+
else:
|
| 940 |
+
yield "The number of reasoning rounds exceeded the limit."
|
| 941 |
+
|
| 942 |
+
except Exception as e:
|
| 943 |
+
logger.error(f"Exception in run_gradio_chat: {e}", exc_info=True)
|
| 944 |
+
error_msg = f"An error occurred: {e}"
|
| 945 |
+
history.append(ChatMessage(role="assistant", content=error_msg))
|
| 946 |
+
yield history
|
| 947 |
+
if self.force_finish:
|
| 948 |
+
last_outputs_str = self.get_answer_based_on_unfinished_reasoning(
|
| 949 |
+
conversation, temperature, max_new_tokens, max_token)
|
| 950 |
+
if '[FinalAnswer]' in last_outputs_str:
|
| 951 |
+
parts = last_outputs_str.split('[FinalAnswer]', 1)
|
| 952 |
+
if len(parts) == 2:
|
| 953 |
+
final_thought, final_answer = parts
|
| 954 |
+
else:
|
| 955 |
+
final_thought, final_answer = last_outputs_str, ""
|
| 956 |
+
history.append(ChatMessage(role="assistant", content=final_thought.strip()))
|
| 957 |
+
yield history
|
| 958 |
+
history.append(ChatMessage(role="assistant", content="**🧠 Final Analysis:**\n" + final_answer.strip()))
|
| 959 |
+
yield history
|
| 960 |
+
else:
|
| 961 |
+
history.append(ChatMessage(role="assistant", content=last_outputs_str.strip()))
|
| 962 |
+
yield history
|
| 963 |
+
return error_msg
|