Update src/txagent/txagent.py
Browse files- src/txagent/txagent.py +330 -272
src/txagent/txagent.py
CHANGED
@@ -24,17 +24,17 @@ class TxAgent:
|
|
24 |
rag_model_name,
|
25 |
tool_files_dict=None,
|
26 |
enable_finish=True,
|
27 |
-
enable_rag=
|
28 |
enable_summary=False,
|
29 |
-
init_rag_num=
|
30 |
-
step_rag_num=
|
31 |
summary_mode='step',
|
32 |
summary_skip_last_k=0,
|
33 |
summary_context_length=None,
|
34 |
force_finish=True,
|
35 |
avoid_repeat=True,
|
36 |
seed=None,
|
37 |
-
enable_checker=False,
|
38 |
enable_chat=False,
|
39 |
additional_default_tools=None):
|
40 |
self.model_name = model_name
|
@@ -45,9 +45,9 @@ class TxAgent:
|
|
45 |
self.model = None
|
46 |
self.rag_model = ToolRAGModel(rag_model_name)
|
47 |
self.tooluniverse = None
|
48 |
-
self.prompt_multi_step = "You are a
|
49 |
-
self.self_prompt = "
|
50 |
-
self.chat_prompt = "You are a helpful assistant for
|
51 |
self.enable_finish = enable_finish
|
52 |
self.enable_rag = enable_rag
|
53 |
self.enable_summary = enable_summary
|
@@ -61,28 +61,23 @@ class TxAgent:
|
|
61 |
self.seed = seed
|
62 |
self.enable_checker = enable_checker
|
63 |
self.additional_default_tools = additional_default_tools
|
64 |
-
logger.
|
65 |
|
66 |
def init_model(self):
|
67 |
self.load_models()
|
68 |
self.load_tooluniverse()
|
69 |
-
self.load_tool_desc_embedding()
|
70 |
-
|
71 |
-
def print_self_values(self):
|
72 |
-
for attr, value in self.__dict__.items():
|
73 |
-
logger.debug("%s: %s", attr, value)
|
74 |
|
75 |
def load_models(self, model_name=None):
|
76 |
-
if model_name is not None
|
77 |
-
|
78 |
-
|
79 |
self.model_name = model_name
|
80 |
|
81 |
-
self.model = LLM(model=self.model_name, dtype="float16"
|
82 |
self.chat_template = Template(self.model.get_tokenizer().chat_template)
|
83 |
self.tokenizer = self.model.get_tokenizer()
|
84 |
logger.info("Model %s loaded successfully", self.model_name)
|
85 |
-
return f"Model {
|
86 |
|
87 |
def load_tooluniverse(self):
|
88 |
self.tooluniverse = ToolUniverse(tool_files=self.tool_files_dict)
|
@@ -93,7 +88,12 @@ class TxAgent:
|
|
93 |
logger.debug("ToolUniverse loaded with %d special tools", len(self.special_tools_name))
|
94 |
|
95 |
def load_tool_desc_embedding(self):
|
96 |
-
|
|
|
|
|
|
|
|
|
|
|
97 |
logger.debug("Tool description embeddings loaded")
|
98 |
|
99 |
def rag_infer(self, query, top_k=5):
|
@@ -107,39 +107,43 @@ class TxAgent:
|
|
107 |
call_agent_level += 1
|
108 |
if call_agent_level >= 2:
|
109 |
call_agent = False
|
110 |
-
|
111 |
-
if not call_agent and self.enable_rag:
|
112 |
-
picked_tools_prompt += self.tool_RAG(
|
113 |
-
message=message, rag_num=self.init_rag_num)
|
114 |
return picked_tools_prompt, call_agent_level
|
115 |
|
116 |
def initialize_conversation(self, message, conversation=None, history=None):
|
117 |
if conversation is None:
|
118 |
conversation = []
|
119 |
|
120 |
-
conversation = self.set_system_prompt(
|
|
|
121 |
if history:
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
|
|
126 |
conversation.append({"role": "user", "content": message})
|
127 |
logger.debug("Conversation initialized with %d messages", len(conversation))
|
128 |
return conversation
|
129 |
|
130 |
-
def tool_RAG(self, message=None,
|
131 |
-
|
132 |
-
|
|
|
|
|
|
|
|
|
|
|
133 |
if picked_tool_names is None:
|
134 |
-
picked_tool_names
|
|
|
|
|
|
|
|
|
|
|
135 |
|
136 |
-
picked_tool_names = [
|
137 |
-
tool for tool in picked_tool_names
|
138 |
-
if tool not in self.special_tools_name
|
139 |
-
][:rag_num]
|
140 |
picked_tools = self.tooluniverse.get_tool_by_name(picked_tool_names)
|
141 |
picked_tools_prompt = self.tooluniverse.prepare_tool_prompts(picked_tools)
|
142 |
-
logger.debug("
|
143 |
if return_call_result:
|
144 |
return picked_tools_prompt, picked_tool_names
|
145 |
return picked_tools_prompt
|
@@ -151,15 +155,6 @@ class TxAgent:
|
|
151 |
if call_agent:
|
152 |
tools.append(self.tooluniverse.get_one_tool_by_one_name('CallAgent', return_prompt=True))
|
153 |
logger.debug("CallAgent tool added")
|
154 |
-
elif self.enable_rag:
|
155 |
-
tools.append(self.tooluniverse.get_one_tool_by_one_name('Tool_RAG', return_prompt=True))
|
156 |
-
logger.debug("Tool_RAG tool added")
|
157 |
-
if self.additional_default_tools:
|
158 |
-
for tool_name in self.additional_default_tools:
|
159 |
-
tool_prompt = self.tooluniverse.get_one_tool_by_one_name(tool_name, return_prompt=True)
|
160 |
-
if tool_prompt:
|
161 |
-
tools.append(tool_prompt)
|
162 |
-
logger.debug("%s tool added", tool_name)
|
163 |
return tools
|
164 |
|
165 |
def add_finish_tools(self, tools):
|
@@ -174,43 +169,51 @@ class TxAgent:
|
|
174 |
conversation[0] = {"role": "system", "content": sys_prompt}
|
175 |
return conversation
|
176 |
|
177 |
-
def run_function_call(self, fcall_str,
|
178 |
-
|
179 |
-
|
|
|
|
|
|
|
|
|
180 |
function_call_json, message = self.tooluniverse.extract_function_call_json(
|
181 |
fcall_str, return_message=return_message, verbose=False)
|
182 |
call_results = []
|
183 |
special_tool_call = ''
|
184 |
if function_call_json:
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
|
|
|
|
|
|
|
|
214 |
else:
|
215 |
call_results.append({
|
216 |
"role": "tool",
|
@@ -219,63 +222,68 @@ class TxAgent:
|
|
219 |
|
220 |
revised_messages = [{
|
221 |
"role": "assistant",
|
222 |
-
"content": message.strip()
|
223 |
"tool_calls": json.dumps(function_call_json)
|
224 |
}] + call_results
|
225 |
return revised_messages, existing_tools_prompt, special_tool_call
|
226 |
|
227 |
-
def run_function_call_stream(self, fcall_str,
|
228 |
-
|
229 |
-
|
230 |
-
|
|
|
|
|
|
|
|
|
231 |
function_call_json, message = self.tooluniverse.extract_function_call_json(
|
232 |
fcall_str, return_message=return_message, verbose=False)
|
233 |
call_results = []
|
234 |
special_tool_call = ''
|
235 |
-
|
|
|
236 |
if function_call_json:
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
metadata={"title":
|
278 |
-
|
279 |
else:
|
280 |
call_results.append({
|
281 |
"role": "tool",
|
@@ -284,25 +292,37 @@ class TxAgent:
|
|
284 |
|
285 |
revised_messages = [{
|
286 |
"role": "assistant",
|
287 |
-
"content": message.strip()
|
288 |
"tool_calls": json.dumps(function_call_json)
|
289 |
}] + call_results
|
290 |
-
|
|
|
|
|
291 |
|
292 |
-
def get_answer_based_on_unfinished_reasoning(self, conversation, temperature, max_new_tokens, max_token):
|
293 |
if conversation[-1]['role'] == 'assistant':
|
294 |
conversation.append(
|
295 |
-
{'role': 'tool', 'content': 'Errors occurred; provide final answer with current
|
296 |
finish_tools_prompt = self.add_finish_tools([])
|
297 |
-
|
298 |
-
messages=conversation,
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
logger.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
306 |
picked_tools_prompt, call_agent_level = self.initialize_tools_prompt(
|
307 |
call_agent, call_agent_level, message)
|
308 |
conversation = self.initialize_conversation(message)
|
@@ -314,53 +334,57 @@ class TxAgent:
|
|
314 |
enable_summary = False
|
315 |
last_status = {}
|
316 |
|
317 |
-
if self.enable_checker:
|
318 |
-
checker = ReasoningTraceChecker(message, conversation)
|
319 |
-
|
320 |
while next_round and current_round < max_round:
|
321 |
current_round += 1
|
322 |
-
if
|
323 |
function_call_messages, picked_tools_prompt, special_tool_call = self.run_function_call(
|
324 |
-
last_outputs, return_message=True,
|
325 |
-
|
326 |
-
|
|
|
|
|
|
|
327 |
|
328 |
if special_tool_call == 'Finish':
|
329 |
next_round = False
|
330 |
conversation.extend(function_call_messages)
|
331 |
content = function_call_messages[0]['content']
|
332 |
-
|
|
|
|
|
333 |
|
334 |
if (self.enable_summary or token_overflow) and not call_agent:
|
335 |
enable_summary = True
|
336 |
last_status = self.function_result_summary(
|
337 |
-
conversation, status=last_status, enable_summary=enable_summary)
|
338 |
|
339 |
if function_call_messages:
|
340 |
conversation.extend(function_call_messages)
|
341 |
outputs.append(tool_result_format(function_call_messages))
|
342 |
else:
|
343 |
next_round = False
|
|
|
344 |
return ''.join(last_outputs).replace("</s>", "")
|
345 |
|
346 |
-
if self.enable_checker:
|
347 |
-
good_status, wrong_info = checker.check_conversation()
|
348 |
-
if not good_status:
|
349 |
-
logger.warning("Checker error: %s", wrong_info)
|
350 |
-
break
|
351 |
-
|
352 |
last_outputs = []
|
|
|
353 |
last_outputs_str, token_overflow = self.llm_infer(
|
354 |
-
messages=conversation,
|
355 |
-
|
|
|
|
|
|
|
|
|
|
|
356 |
if last_outputs_str is None:
|
|
|
357 |
if self.force_finish:
|
358 |
return self.get_answer_based_on_unfinished_reasoning(
|
359 |
conversation, temperature, max_new_tokens, max_token)
|
360 |
return "❌ Token limit exceeded."
|
361 |
last_outputs.append(last_outputs_str)
|
362 |
|
363 |
-
if
|
364 |
logger.warning("Max rounds exceeded")
|
365 |
if self.force_finish:
|
366 |
return self.get_answer_based_on_unfinished_reasoning(
|
@@ -370,16 +394,16 @@ class TxAgent:
|
|
370 |
def build_logits_processor(self, messages, llm):
|
371 |
tokenizer = llm.get_tokenizer()
|
372 |
if self.avoid_repeat and len(messages) > 2:
|
373 |
-
assistant_messages = [
|
374 |
-
m['content'] for m in messages[-3:] if m['role'] == 'assistant'
|
375 |
-
][:2]
|
376 |
forbidden_ids = [tokenizer.encode(msg, add_special_tokens=False) for msg in assistant_messages]
|
377 |
return [NoRepeatSentenceProcessor(forbidden_ids, 5)]
|
378 |
return None
|
379 |
|
380 |
-
def llm_infer(self, messages, temperature=0.1, tools=None,
|
381 |
-
|
382 |
-
|
|
|
|
|
383 |
if model is None:
|
384 |
model = self.model
|
385 |
|
@@ -388,73 +412,108 @@ class TxAgent:
|
|
388 |
temperature=temperature,
|
389 |
max_tokens=max_new_tokens,
|
390 |
seed=seed if seed is not None else self.seed,
|
391 |
-
logits_processors=logits_processor
|
392 |
)
|
393 |
|
394 |
-
prompt = self.chat_template.render(
|
395 |
-
|
|
|
396 |
prompt += output_begin_string
|
397 |
|
398 |
-
if check_token_status and max_token:
|
|
|
399 |
num_input_tokens = len(self.tokenizer.encode(prompt, return_tensors="pt")[0])
|
400 |
if num_input_tokens > max_token:
|
401 |
torch.cuda.empty_cache()
|
402 |
gc.collect()
|
403 |
logger.info("Token overflow: %d > %d", num_input_tokens, max_token)
|
404 |
return None, True
|
405 |
-
logger.debug("Input tokens: %d", num_input_tokens)
|
406 |
|
407 |
output = model.generate(prompt, sampling_params=sampling_params)
|
408 |
output = output[0].outputs[0].text
|
409 |
logger.debug("Inference output: %s", output[:100])
|
410 |
-
torch.cuda.empty_cache()
|
411 |
-
|
412 |
-
|
|
|
413 |
return output
|
414 |
|
415 |
-
def run_self_agent(self, message: str,
|
416 |
-
|
|
|
|
|
|
|
417 |
conversation = self.set_system_prompt([], self.self_prompt)
|
418 |
conversation.append({"role": "user", "content": message})
|
419 |
-
return self.llm_infer(
|
420 |
-
|
421 |
-
|
422 |
-
|
423 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
424 |
conversation = self.set_system_prompt([], self.chat_prompt)
|
425 |
conversation.append({"role": "user", "content": message})
|
426 |
-
return self.llm_infer(
|
427 |
-
|
428 |
-
|
429 |
-
|
430 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
431 |
if '[FinalAnswer]' in answer:
|
432 |
possible_final_answer = answer.split("[FinalAnswer]")[-1]
|
433 |
elif "\n\n" in answer:
|
434 |
possible_final_answer = answer.split("\n\n")[-1]
|
435 |
else:
|
436 |
possible_final_answer = answer.strip()
|
437 |
-
|
438 |
-
|
439 |
-
return possible_final_answer[0]
|
440 |
elif len(possible_final_answer) > 1 and possible_final_answer[1] == ':' and possible_final_answer[0] in ['A', 'B', 'C', 'D', 'E']:
|
441 |
return possible_final_answer[0]
|
442 |
|
443 |
conversation = self.set_system_prompt(
|
444 |
-
[], "Transform the answer to a single letter: 'A', 'B', 'C', 'D'
|
445 |
-
conversation.append({"role": "user", "content":
|
446 |
-
|
447 |
-
|
448 |
-
|
449 |
-
|
450 |
-
|
451 |
-
|
452 |
-
|
453 |
-
|
454 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
455 |
conversation = [{"role": "user", "content": prompt}]
|
456 |
-
output = self.llm_infer(
|
457 |
-
|
|
|
|
|
|
|
|
|
458 |
if '[' in output:
|
459 |
output = output.split('[')[0]
|
460 |
return output
|
@@ -462,55 +521,43 @@ Summarize the function responses in one sentence with all necessary information.
|
|
462 |
def function_result_summary(self, input_list, status, enable_summary):
|
463 |
if 'tool_call_step' not in status:
|
464 |
status['tool_call_step'] = 0
|
465 |
-
if 'step' not in status:
|
466 |
-
status['step'] = 0
|
467 |
-
status['step'] += 1
|
468 |
-
|
469 |
for idx in range(len(input_list)):
|
470 |
pos_id = len(input_list) - idx - 1
|
471 |
if input_list[pos_id]['role'] == 'assistant' and 'tool_calls' in input_list[pos_id]:
|
472 |
-
if 'Tool_RAG' in str(input_list[pos_id]['tool_calls']):
|
473 |
-
status['tool_call_step'] += 1
|
474 |
break
|
475 |
|
|
|
476 |
if not enable_summary:
|
477 |
return status
|
478 |
|
479 |
-
|
480 |
-
|
481 |
-
|
482 |
-
|
483 |
-
if 'previous_length' not in status:
|
484 |
-
status['previous_length'] = 0
|
485 |
-
if 'history' not in status:
|
486 |
-
status['history'] = []
|
487 |
|
488 |
-
status['history'].append(
|
489 |
-
self.summary_mode == 'step' and status['summarized_step'] < status['step'] - status['tool_call_step'] - self.summary_skip_last_k)
|
490 |
-
|
491 |
-
idx = status['summarized_index']
|
492 |
function_response = ''
|
|
|
493 |
this_thought_calls = None
|
|
|
494 |
while idx < len(input_list):
|
495 |
if (self.summary_mode == 'step' and status['summarized_step'] < status['step'] - status['tool_call_step'] - self.summary_skip_last_k) or \
|
496 |
(self.summary_mode == 'length' and status['previous_length'] > self.summary_context_length):
|
497 |
if input_list[idx]['role'] == 'assistant':
|
498 |
-
if
|
499 |
-
|
500 |
-
|
501 |
-
|
502 |
-
|
503 |
-
|
504 |
-
|
505 |
-
|
506 |
-
|
507 |
-
|
508 |
-
|
509 |
-
|
510 |
-
|
511 |
-
|
512 |
-
|
513 |
-
elif input_list[idx]['role'] == 'tool' and this_thought_calls:
|
514 |
function_response += input_list[idx]['content']
|
515 |
del input_list[idx]
|
516 |
idx -= 1
|
@@ -521,14 +568,16 @@ Summarize the function responses in one sentence with all necessary information.
|
|
521 |
if function_response:
|
522 |
status['summarized_step'] += 1
|
523 |
result_summary = self.run_summary_agent(
|
524 |
-
thought_calls=this_thought_calls,
|
525 |
-
|
|
|
|
|
|
|
526 |
tool_calls = json.loads(input_list[last_call_idx]['tool_calls'])
|
527 |
for tool_call in tool_calls:
|
528 |
del tool_call['call_id']
|
529 |
input_list[last_call_idx]['tool_calls'] = json.dumps(tool_calls)
|
530 |
-
input_list.insert(
|
531 |
-
last_call_idx + 1, {'role': 'tool', 'content': result_summary})
|
532 |
status['summarized_index'] = last_call_idx + 2
|
533 |
|
534 |
return status
|
@@ -539,22 +588,26 @@ Summarize the function responses in one sentence with all necessary information.
|
|
539 |
if hasattr(self, key):
|
540 |
setattr(self, key, value)
|
541 |
updated_attributes[key] = value
|
542 |
-
logger.
|
543 |
return updated_attributes
|
544 |
|
545 |
-
def run_gradio_chat(self, message: str,
|
546 |
-
|
547 |
-
|
548 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
549 |
uploaded_files: list = None):
|
550 |
-
logger.
|
551 |
if not message or len(message.strip()) < 5:
|
552 |
yield "Please provide a valid message or upload files to analyze."
|
553 |
return
|
554 |
|
555 |
-
if message.startswith("[\U0001f9f0 Tool_RAG") or message.startswith("⚒️"):
|
556 |
-
return
|
557 |
-
|
558 |
picked_tools_prompt, call_agent_level = self.initialize_tools_prompt(
|
559 |
call_agent, call_agent_level, message)
|
560 |
conversation = self.initialize_conversation(
|
@@ -567,18 +620,17 @@ Summarize the function responses in one sentence with all necessary information.
|
|
567 |
last_status = {}
|
568 |
token_overflow = False
|
569 |
|
570 |
-
if self.enable_checker:
|
571 |
-
checker = ReasoningTraceChecker(message, conversation, init_index=len(conversation))
|
572 |
-
|
573 |
try:
|
574 |
while next_round and current_round < max_round:
|
575 |
current_round += 1
|
576 |
-
last_outputs = []
|
577 |
if last_outputs:
|
578 |
function_call_messages, picked_tools_prompt, special_tool_call, current_gradio_history = yield from self.run_function_call_stream(
|
579 |
-
last_outputs, return_message=True,
|
580 |
-
|
581 |
-
|
|
|
|
|
|
|
582 |
history.extend(current_gradio_history)
|
583 |
|
584 |
if special_tool_call == 'Finish':
|
@@ -587,7 +639,7 @@ Summarize the function responses in one sentence with all necessary information.
|
|
587 |
conversation.extend(function_call_messages)
|
588 |
return function_call_messages[0]['content']
|
589 |
|
590 |
-
|
591 |
last_msg = history[-1] if history else ChatMessage(role="assistant", content="Response needed.")
|
592 |
history.append(ChatMessage(role="assistant", content=last_msg.content))
|
593 |
yield history
|
@@ -604,19 +656,22 @@ Summarize the function responses in one sentence with all necessary information.
|
|
604 |
yield history
|
605 |
else:
|
606 |
next_round = False
|
|
|
607 |
return ''.join(last_outputs).replace("</s>", "")
|
608 |
|
609 |
-
|
610 |
-
good_status, wrong_info = checker.check_conversation()
|
611 |
-
if not good_status:
|
612 |
-
logger.warning("Checker error: %s", wrong_info)
|
613 |
-
break
|
614 |
-
|
615 |
last_outputs_str, token_overflow = self.llm_infer(
|
616 |
-
messages=conversation,
|
617 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
618 |
|
619 |
if last_outputs_str is None:
|
|
|
620 |
if self.force_finish:
|
621 |
last_outputs_str = self.get_answer_based_on_unfinished_reasoning(
|
622 |
conversation, temperature, max_new_tokens, max_token)
|
@@ -630,7 +685,7 @@ Summarize the function responses in one sentence with all necessary information.
|
|
630 |
|
631 |
last_thought = last_outputs_str.split("[TOOL_CALLS]")[0]
|
632 |
for msg in history:
|
633 |
-
if msg.metadata:
|
634 |
msg.metadata['status'] = 'done'
|
635 |
|
636 |
if '[FinalAnswer]' in last_thought:
|
@@ -646,15 +701,18 @@ Summarize the function responses in one sentence with all necessary information.
|
|
646 |
|
647 |
last_outputs.append(last_outputs_str)
|
648 |
|
649 |
-
if next_round
|
650 |
-
|
651 |
-
|
652 |
-
|
653 |
-
|
654 |
-
|
655 |
-
|
656 |
-
|
657 |
-
|
|
|
|
|
|
|
658 |
|
659 |
except Exception as e:
|
660 |
logger.error("Exception in run_gradio_chat: %s", e, exc_info=True)
|
|
|
24 |
rag_model_name,
|
25 |
tool_files_dict=None,
|
26 |
enable_finish=True,
|
27 |
+
enable_rag=False,
|
28 |
enable_summary=False,
|
29 |
+
init_rag_num=0,
|
30 |
+
step_rag_num=0,
|
31 |
summary_mode='step',
|
32 |
summary_skip_last_k=0,
|
33 |
summary_context_length=None,
|
34 |
force_finish=True,
|
35 |
avoid_repeat=True,
|
36 |
seed=None,
|
37 |
+
enable_checker=False,
|
38 |
enable_chat=False,
|
39 |
additional_default_tools=None):
|
40 |
self.model_name = model_name
|
|
|
45 |
self.model = None
|
46 |
self.rag_model = ToolRAGModel(rag_model_name)
|
47 |
self.tooluniverse = None
|
48 |
+
self.prompt_multi_step = "You are a helpful assistant that solves problems through step-by-step reasoning."
|
49 |
+
self.self_prompt = "Strictly follow the instruction."
|
50 |
+
self.chat_prompt = "You are a helpful assistant for user chat."
|
51 |
self.enable_finish = enable_finish
|
52 |
self.enable_rag = enable_rag
|
53 |
self.enable_summary = enable_summary
|
|
|
61 |
self.seed = seed
|
62 |
self.enable_checker = enable_checker
|
63 |
self.additional_default_tools = additional_default_tools
|
64 |
+
logger.info("TxAgent initialized with model: %s, RAG: %s", model_name, rag_model_name)
|
65 |
|
66 |
def init_model(self):
|
67 |
self.load_models()
|
68 |
self.load_tooluniverse()
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
def load_models(self, model_name=None):
|
71 |
+
if model_name is not None:
|
72 |
+
if model_name == self.model_name:
|
73 |
+
return f"The model {model_name} is already loaded."
|
74 |
self.model_name = model_name
|
75 |
|
76 |
+
self.model = LLM(model=self.model_name, dtype="float16", max_model_len=512, gpu_memory_utilization=0.8)
|
77 |
self.chat_template = Template(self.model.get_tokenizer().chat_template)
|
78 |
self.tokenizer = self.model.get_tokenizer()
|
79 |
logger.info("Model %s loaded successfully", self.model_name)
|
80 |
+
return f"Model {model_name} loaded successfully."
|
81 |
|
82 |
def load_tooluniverse(self):
|
83 |
self.tooluniverse = ToolUniverse(tool_files=self.tool_files_dict)
|
|
|
88 |
logger.debug("ToolUniverse loaded with %d special tools", len(self.special_tools_name))
|
89 |
|
90 |
def load_tool_desc_embedding(self):
|
91 |
+
cache_path = os.path.join(os.path.dirname(self.tool_files_dict["new_tool"]), "tool_embeddings.pkl")
|
92 |
+
if os.path.exists(cache_path):
|
93 |
+
self.rag_model.load_cached_embeddings(cache_path)
|
94 |
+
else:
|
95 |
+
self.rag_model.load_tool_desc_embedding(self.tooluniverse)
|
96 |
+
self.rag_model.save_embeddings(cache_path)
|
97 |
logger.debug("Tool description embeddings loaded")
|
98 |
|
99 |
def rag_infer(self, query, top_k=5):
|
|
|
107 |
call_agent_level += 1
|
108 |
if call_agent_level >= 2:
|
109 |
call_agent = False
|
|
|
|
|
|
|
|
|
110 |
return picked_tools_prompt, call_agent_level
|
111 |
|
112 |
def initialize_conversation(self, message, conversation=None, history=None):
|
113 |
if conversation is None:
|
114 |
conversation = []
|
115 |
|
116 |
+
conversation = self.set_system_prompt(
|
117 |
+
conversation, self.prompt_multi_step)
|
118 |
if history:
|
119 |
+
for i in range(len(history)):
|
120 |
+
if history[i]['role'] == 'user':
|
121 |
+
conversation.append({"role": "user", "content": history[i]['content']})
|
122 |
+
elif history[i]['role'] == 'assistant':
|
123 |
+
conversation.append({"role": "assistant", "content": history[i]['content']})
|
124 |
conversation.append({"role": "user", "content": message})
|
125 |
logger.debug("Conversation initialized with %d messages", len(conversation))
|
126 |
return conversation
|
127 |
|
128 |
+
def tool_RAG(self, message=None,
|
129 |
+
picked_tool_names=None,
|
130 |
+
existing_tools_prompt=[],
|
131 |
+
rag_num=0,
|
132 |
+
return_call_result=False):
|
133 |
+
if not self.enable_rag:
|
134 |
+
return []
|
135 |
+
extra_factor = 10
|
136 |
if picked_tool_names is None:
|
137 |
+
assert picked_tool_names is not None or message is not None
|
138 |
+
picked_tool_names = self.rag_infer(
|
139 |
+
message, top_k=rag_num * extra_factor)
|
140 |
+
|
141 |
+
picked_tool_names_no_special = [tool for tool in picked_tool_names if tool not in self.special_tools_name]
|
142 |
+
picked_tool_names = picked_tool_names_no_special[:rag_num]
|
143 |
|
|
|
|
|
|
|
|
|
144 |
picked_tools = self.tooluniverse.get_tool_by_name(picked_tool_names)
|
145 |
picked_tools_prompt = self.tooluniverse.prepare_tool_prompts(picked_tools)
|
146 |
+
logger.debug("Retrieved %d tools via RAG", len(picked_tools_prompt))
|
147 |
if return_call_result:
|
148 |
return picked_tools_prompt, picked_tool_names
|
149 |
return picked_tools_prompt
|
|
|
155 |
if call_agent:
|
156 |
tools.append(self.tooluniverse.get_one_tool_by_one_name('CallAgent', return_prompt=True))
|
157 |
logger.debug("CallAgent tool added")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
158 |
return tools
|
159 |
|
160 |
def add_finish_tools(self, tools):
|
|
|
169 |
conversation[0] = {"role": "system", "content": sys_prompt}
|
170 |
return conversation
|
171 |
|
172 |
+
def run_function_call(self, fcall_str,
|
173 |
+
return_message=False,
|
174 |
+
existing_tools_prompt=None,
|
175 |
+
message_for_call_agent=None,
|
176 |
+
call_agent=False,
|
177 |
+
call_agent_level=None,
|
178 |
+
temperature=None):
|
179 |
function_call_json, message = self.tooluniverse.extract_function_call_json(
|
180 |
fcall_str, return_message=return_message, verbose=False)
|
181 |
call_results = []
|
182 |
special_tool_call = ''
|
183 |
if function_call_json:
|
184 |
+
if isinstance(function_call_json, list):
|
185 |
+
for i in range(len(function_call_json)):
|
186 |
+
logger.info("Tool Call: %s", function_call_json[i])
|
187 |
+
if function_call_json[i]["name"] == 'Finish':
|
188 |
+
special_tool_call = 'Finish'
|
189 |
+
break
|
190 |
+
elif function_call_json[i]["name"] == 'CallAgent':
|
191 |
+
if call_agent_level < 2 and call_agent:
|
192 |
+
solution_plan = function_call_json[i]['arguments']['solution']
|
193 |
+
full_message = (
|
194 |
+
message_for_call_agent +
|
195 |
+
"\nYou must follow the following plan to answer the question: " +
|
196 |
+
str(solution_plan)
|
197 |
+
)
|
198 |
+
call_result = self.run_multistep_agent(
|
199 |
+
full_message, temperature=temperature,
|
200 |
+
max_new_tokens=128, max_token=768,
|
201 |
+
call_agent=False, call_agent_level=call_agent_level)
|
202 |
+
if call_result is None:
|
203 |
+
call_result = "⚠️ No content returned from sub-agent."
|
204 |
+
else:
|
205 |
+
call_result = call_result.split('[FinalAnswer]')[-1].strip()
|
206 |
+
else:
|
207 |
+
call_result = "Error: CallAgent disabled."
|
208 |
+
else:
|
209 |
+
call_result = self.tooluniverse.run_one_function(function_call_json[i])
|
210 |
+
call_id = self.tooluniverse.call_id_gen()
|
211 |
+
function_call_json[i]["call_id"] = call_id
|
212 |
+
logger.info("Tool Call Result: %s", call_result)
|
213 |
+
call_results.append({
|
214 |
+
"role": "tool",
|
215 |
+
"content": json.dumps({"tool_name": function_call_json[i]["name"], "content": call_result, "call_id": call_id})
|
216 |
+
})
|
217 |
else:
|
218 |
call_results.append({
|
219 |
"role": "tool",
|
|
|
222 |
|
223 |
revised_messages = [{
|
224 |
"role": "assistant",
|
225 |
+
"content": message.strip(),
|
226 |
"tool_calls": json.dumps(function_call_json)
|
227 |
}] + call_results
|
228 |
return revised_messages, existing_tools_prompt, special_tool_call
|
229 |
|
230 |
+
def run_function_call_stream(self, fcall_str,
|
231 |
+
return_message=False,
|
232 |
+
existing_tools_prompt=None,
|
233 |
+
message_for_call_agent=None,
|
234 |
+
call_agent=False,
|
235 |
+
call_agent_level=None,
|
236 |
+
temperature=None,
|
237 |
+
return_gradio_history=True):
|
238 |
function_call_json, message = self.tooluniverse.extract_function_call_json(
|
239 |
fcall_str, return_message=return_message, verbose=False)
|
240 |
call_results = []
|
241 |
special_tool_call = ''
|
242 |
+
if return_gradio_history:
|
243 |
+
gradio_history = []
|
244 |
if function_call_json:
|
245 |
+
if isinstance(function_call_json, list):
|
246 |
+
for i in range(len(function_call_json)):
|
247 |
+
if function_call_json[i]["name"] == 'Finish':
|
248 |
+
special_tool_call = 'Finish'
|
249 |
+
break
|
250 |
+
elif function_call_json[i]["name"] == 'DirectResponse':
|
251 |
+
call_result = function_call_json[i]['arguments']['respose']
|
252 |
+
special_tool_call = 'DirectResponse'
|
253 |
+
elif function_call_json[i]["name"] == 'RequireClarification':
|
254 |
+
call_result = function_call_json[i]['arguments']['unclear_question']
|
255 |
+
special_tool_call = 'RequireClarification'
|
256 |
+
elif function_call_json[i]["name"] == 'CallAgent':
|
257 |
+
if call_agent_level < 2 and call_agent:
|
258 |
+
solution_plan = function_call_json[i]['arguments']['solution']
|
259 |
+
full_message = (
|
260 |
+
message_for_call_agent +
|
261 |
+
"\nYou must follow the following plan to answer the question: " +
|
262 |
+
str(solution_plan)
|
263 |
+
)
|
264 |
+
sub_agent_task = "Sub TxAgent plan: " + str(solution_plan)
|
265 |
+
call_result = yield from self.run_gradio_chat(
|
266 |
+
full_message, history=[], temperature=temperature,
|
267 |
+
max_new_tokens=128, max_token=768,
|
268 |
+
call_agent=False, call_agent_level=call_agent_level,
|
269 |
+
conversation=None, sub_agent_task=sub_agent_task)
|
270 |
+
if call_result is not None and isinstance(call_result, str):
|
271 |
+
call_result = call_result.split('[FinalAnswer]')[-1]
|
272 |
+
else:
|
273 |
+
call_result = "⚠️ No content returned from sub-agent."
|
274 |
+
else:
|
275 |
+
call_result = "Error: CallAgent disabled."
|
276 |
+
else:
|
277 |
+
call_result = self.tooluniverse.run_one_function(function_call_json[i])
|
278 |
+
call_id = self.tooluniverse.call_id_gen()
|
279 |
+
function_call_json[i]["call_id"] = call_id
|
280 |
+
call_results.append({
|
281 |
+
"role": "tool",
|
282 |
+
"content": json.dumps({"tool_name": function_call_json[i]["name"], "content": call_result, "call_id": call_id})
|
283 |
+
})
|
284 |
+
if return_gradio_history and function_call_json[i]["name"] != 'Finish':
|
285 |
+
metadata = {"title": f"🧰 {function_call_json[i]['name']}", "log": str(function_call_json[i]['arguments'])}
|
286 |
+
gradio_history.append(ChatMessage(role="assistant", content=str(call_result), metadata=metadata))
|
287 |
else:
|
288 |
call_results.append({
|
289 |
"role": "tool",
|
|
|
292 |
|
293 |
revised_messages = [{
|
294 |
"role": "assistant",
|
295 |
+
"content": message.strip(),
|
296 |
"tool_calls": json.dumps(function_call_json)
|
297 |
}] + call_results
|
298 |
+
if return_gradio_history:
|
299 |
+
return revised_messages, existing_tools_prompt, special_tool_call, gradio_history
|
300 |
+
return revised_messages, existing_tools_prompt, special_tool_call
|
301 |
|
302 |
+
def get_answer_based_on_unfinished_reasoning(self, conversation, temperature, max_new_tokens, max_token, outputs=None):
|
303 |
if conversation[-1]['role'] == 'assistant':
|
304 |
conversation.append(
|
305 |
+
{'role': 'tool', 'content': 'Errors occurred during function call; provide final answer with current information.'})
|
306 |
finish_tools_prompt = self.add_finish_tools([])
|
307 |
+
last_outputs_str = self.llm_infer(
|
308 |
+
messages=conversation,
|
309 |
+
temperature=temperature,
|
310 |
+
tools=finish_tools_prompt,
|
311 |
+
output_begin_string='[FinalAnswer]',
|
312 |
+
skip_special_tokens=True,
|
313 |
+
max_new_tokens=max_new_tokens,
|
314 |
+
max_token=max_token)
|
315 |
+
logger.info("Unfinished reasoning answer: %s", last_outputs_str[:100])
|
316 |
+
return last_outputs_str
|
317 |
+
|
318 |
+
def run_multistep_agent(self, message: str,
|
319 |
+
temperature: float,
|
320 |
+
max_new_tokens: int,
|
321 |
+
max_token: int,
|
322 |
+
max_round: int = 5,
|
323 |
+
call_agent=False,
|
324 |
+
call_agent_level=0):
|
325 |
+
logger.info("Starting multistep agent for message: %s", message[:100])
|
326 |
picked_tools_prompt, call_agent_level = self.initialize_tools_prompt(
|
327 |
call_agent, call_agent_level, message)
|
328 |
conversation = self.initialize_conversation(message)
|
|
|
334 |
enable_summary = False
|
335 |
last_status = {}
|
336 |
|
|
|
|
|
|
|
337 |
while next_round and current_round < max_round:
|
338 |
current_round += 1
|
339 |
+
if len(outputs) > 0:
|
340 |
function_call_messages, picked_tools_prompt, special_tool_call = self.run_function_call(
|
341 |
+
last_outputs, return_message=True,
|
342 |
+
existing_tools_prompt=picked_tools_prompt,
|
343 |
+
message_for_call_agent=message,
|
344 |
+
call_agent=call_agent,
|
345 |
+
call_agent_level=call_agent_level,
|
346 |
+
temperature=temperature)
|
347 |
|
348 |
if special_tool_call == 'Finish':
|
349 |
next_round = False
|
350 |
conversation.extend(function_call_messages)
|
351 |
content = function_call_messages[0]['content']
|
352 |
+
if content is None:
|
353 |
+
return "❌ No content returned after Finish tool call."
|
354 |
+
return content.split('[FinalAnswer]')[-1]
|
355 |
|
356 |
if (self.enable_summary or token_overflow) and not call_agent:
|
357 |
enable_summary = True
|
358 |
last_status = self.function_result_summary(
|
359 |
+
- conversation, status=last_status, enable_summary=enable_summary)
|
360 |
|
361 |
if function_call_messages:
|
362 |
conversation.extend(function_call_messages)
|
363 |
outputs.append(tool_result_format(function_call_messages))
|
364 |
else:
|
365 |
next_round = False
|
366 |
+
conversation.extend([{"role": "assistant", "content": ''.join(last_outputs)}])
|
367 |
return ''.join(last_outputs).replace("</s>", "")
|
368 |
|
|
|
|
|
|
|
|
|
|
|
|
|
369 |
last_outputs = []
|
370 |
+
outputs.append("### TxAgent:\n")
|
371 |
last_outputs_str, token_overflow = self.llm_infer(
|
372 |
+
messages=conversation,
|
373 |
+
temperature=temperature,
|
374 |
+
tools=picked_tools_prompt,
|
375 |
+
skip_special_tokens=False,
|
376 |
+
max_new_tokens=max_new_tokens,
|
377 |
+
max_token=max_token,
|
378 |
+
check_token_status=True)
|
379 |
if last_outputs_str is None:
|
380 |
+
logger.warning("Token limit exceeded")
|
381 |
if self.force_finish:
|
382 |
return self.get_answer_based_on_unfinished_reasoning(
|
383 |
conversation, temperature, max_new_tokens, max_token)
|
384 |
return "❌ Token limit exceeded."
|
385 |
last_outputs.append(last_outputs_str)
|
386 |
|
387 |
+
if max_round == current_round:
|
388 |
logger.warning("Max rounds exceeded")
|
389 |
if self.force_finish:
|
390 |
return self.get_answer_based_on_unfinished_reasoning(
|
|
|
394 |
def build_logits_processor(self, messages, llm):
|
395 |
tokenizer = llm.get_tokenizer()
|
396 |
if self.avoid_repeat and len(messages) > 2:
|
397 |
+
assistant_messages = [msg['content'] for msg in messages[-3:] if msg['role'] == 'assistant'][:2]
|
|
|
|
|
398 |
forbidden_ids = [tokenizer.encode(msg, add_special_tokens=False) for msg in assistant_messages]
|
399 |
return [NoRepeatSentenceProcessor(forbidden_ids, 5)]
|
400 |
return None
|
401 |
|
402 |
+
def llm_infer(self, messages, temperature=0.1, tools=None,
|
403 |
+
output_begin_string=None, max_new_tokens=128,
|
404 |
+
max_token=768, skip_special_tokens=True,
|
405 |
+
model=None, tokenizer=None, terminators=None,
|
406 |
+
seed=None, check_token_status=False):
|
407 |
if model is None:
|
408 |
model = self.model
|
409 |
|
|
|
412 |
temperature=temperature,
|
413 |
max_tokens=max_new_tokens,
|
414 |
seed=seed if seed is not None else self.seed,
|
|
|
415 |
)
|
416 |
|
417 |
+
prompt = self.chat_template.render(
|
418 |
+
messages=messages, tools=tools, add_generation_prompt=True)
|
419 |
+
if output_begin_string is not None:
|
420 |
prompt += output_begin_string
|
421 |
|
422 |
+
if check_token_status and max_token is not None:
|
423 |
+
token_overflow = False
|
424 |
num_input_tokens = len(self.tokenizer.encode(prompt, return_tensors="pt")[0])
|
425 |
if num_input_tokens > max_token:
|
426 |
torch.cuda.empty_cache()
|
427 |
gc.collect()
|
428 |
logger.info("Token overflow: %d > %d", num_input_tokens, max_token)
|
429 |
return None, True
|
|
|
430 |
|
431 |
output = model.generate(prompt, sampling_params=sampling_params)
|
432 |
output = output[0].outputs[0].text
|
433 |
logger.debug("Inference output: %s", output[:100])
|
434 |
+
torch.cuda.empty_cache()
|
435 |
+
gc.collect()
|
436 |
+
if check_token_status and max_token is not None:
|
437 |
+
return output, token_overflow
|
438 |
return output
|
439 |
|
440 |
+
def run_self_agent(self, message: str,
|
441 |
+
temperature: float,
|
442 |
+
max_new_tokens: int,
|
443 |
+
max_token: int):
|
444 |
+
logger.info("Starting self agent")
|
445 |
conversation = self.set_system_prompt([], self.self_prompt)
|
446 |
conversation.append({"role": "user", "content": message})
|
447 |
+
return self.llm_infer(
|
448 |
+
messages=conversation,
|
449 |
+
temperature=temperature,
|
450 |
+
tools=None,
|
451 |
+
max_new_tokens=max_new_tokens,
|
452 |
+
max_token=max_token)
|
453 |
+
|
454 |
+
def run_chat_agent(self, message: str,
|
455 |
+
temperature: float,
|
456 |
+
max_new_tokens: int,
|
457 |
+
max_token: int):
|
458 |
+
logger.info("Starting chat agent")
|
459 |
conversation = self.set_system_prompt([], self.chat_prompt)
|
460 |
conversation.append({"role": "user", "content": message})
|
461 |
+
return self.llm_infer(
|
462 |
+
messages=conversation,
|
463 |
+
temperature=temperature,
|
464 |
+
tools=None,
|
465 |
+
max_new_tokens=max_new_tokens,
|
466 |
+
max_token=max_token)
|
467 |
+
|
468 |
+
def run_format_agent(self, message: str,
|
469 |
+
answer: str,
|
470 |
+
temperature: float,
|
471 |
+
max_new_tokens: int,
|
472 |
+
max_token: int):
|
473 |
+
logger.info("Starting format agent")
|
474 |
if '[FinalAnswer]' in answer:
|
475 |
possible_final_answer = answer.split("[FinalAnswer]")[-1]
|
476 |
elif "\n\n" in answer:
|
477 |
possible_final_answer = answer.split("\n\n")[-1]
|
478 |
else:
|
479 |
possible_final_answer = answer.strip()
|
480 |
+
if len(possible_final_answer) == 1 and possible_final_answer in ['A', 'B', 'C', 'D', 'E']:
|
481 |
+
return possible_final_answer
|
|
|
482 |
elif len(possible_final_answer) > 1 and possible_final_answer[1] == ':' and possible_final_answer[0] in ['A', 'B', 'C', 'D', 'E']:
|
483 |
return possible_final_answer[0]
|
484 |
|
485 |
conversation = self.set_system_prompt(
|
486 |
+
[], "Transform the agent's answer to a single letter: 'A', 'B', 'C', 'D'.")
|
487 |
+
conversation.append({"role": "user", "content": message +
|
488 |
+
"\nAgent's answer: " + answer + "\nAnswer (must be a letter):"})
|
489 |
+
return self.llm_infer(
|
490 |
+
messages=conversation,
|
491 |
+
temperature=temperature,
|
492 |
+
tools=None,
|
493 |
+
max_new_tokens=max_new_tokens,
|
494 |
+
max_token=max_token)
|
495 |
+
|
496 |
+
def run_summary_agent(self, thought_calls: str,
|
497 |
+
function_response: str,
|
498 |
+
temperature: float,
|
499 |
+
max_new_tokens: int,
|
500 |
+
max_token: int):
|
501 |
+
logger.info("Summarizing tool result")
|
502 |
+
prompt = f"""Thought and function calls:
|
503 |
+
{thought_calls}
|
504 |
+
Function calls' responses:
|
505 |
+
\"\"\"
|
506 |
+
{function_response}
|
507 |
+
\"\"\"
|
508 |
+
Summarize the function calls' responses in one sentence with all necessary information.
|
509 |
+
"""
|
510 |
conversation = [{"role": "user", "content": prompt}]
|
511 |
+
output = self.llm_infer(
|
512 |
+
messages=conversation,
|
513 |
+
temperature=temperature,
|
514 |
+
tools=None,
|
515 |
+
max_new_tokens=max_new_tokens,
|
516 |
+
max_token=max_token)
|
517 |
if '[' in output:
|
518 |
output = output.split('[')[0]
|
519 |
return output
|
|
|
521 |
def function_result_summary(self, input_list, status, enable_summary):
|
522 |
if 'tool_call_step' not in status:
|
523 |
status['tool_call_step'] = 0
|
|
|
|
|
|
|
|
|
524 |
for idx in range(len(input_list)):
|
525 |
pos_id = len(input_list) - idx - 1
|
526 |
if input_list[pos_id]['role'] == 'assistant' and 'tool_calls' in input_list[pos_id]:
|
|
|
|
|
527 |
break
|
528 |
|
529 |
+
status['step'] = status.get('step', 0) + 1
|
530 |
if not enable_summary:
|
531 |
return status
|
532 |
|
533 |
+
status['summarized_index'] = status.get('summarized_index', 0)
|
534 |
+
status['summarized_step'] = status.get('summarized_step', 0)
|
535 |
+
status['previous_length'] = status.get('previous_length', 0)
|
536 |
+
status['history'] = status.get('history', [])
|
|
|
|
|
|
|
|
|
537 |
|
|
|
|
|
|
|
|
|
538 |
function_response = ''
|
539 |
+
idx = status['summarized_index']
|
540 |
this_thought_calls = None
|
541 |
+
|
542 |
while idx < len(input_list):
|
543 |
if (self.summary_mode == 'step' and status['summarized_step'] < status['step'] - status['tool_call_step'] - self.summary_skip_last_k) or \
|
544 |
(self.summary_mode == 'length' and status['previous_length'] > self.summary_context_length):
|
545 |
if input_list[idx]['role'] == 'assistant':
|
546 |
+
if function_response:
|
547 |
+
status['summarized_step'] += 1
|
548 |
+
result_summary = self.run_summary_agent(
|
549 |
+
thought_calls=this_thought_calls,
|
550 |
+
function_response=function_response,
|
551 |
+
temperature=0.1,
|
552 |
+
max_new_tokens=128,
|
553 |
+
max_token=768)
|
554 |
+
input_list.insert(last_call_idx + 1, {'role': 'tool', 'content': result_summary})
|
555 |
+
status['summarized_index'] = last_call_idx + 2
|
556 |
+
idx += 1
|
557 |
+
last_call_idx = idx
|
558 |
+
this_thought_calls = input_list[idx]['content'] + input_list[idx]['tool_calls']
|
559 |
+
function_response = ''
|
560 |
+
elif input_list[idx]['role'] == 'tool' and this_thought_calls is not None:
|
|
|
561 |
function_response += input_list[idx]['content']
|
562 |
del input_list[idx]
|
563 |
idx -= 1
|
|
|
568 |
if function_response:
|
569 |
status['summarized_step'] += 1
|
570 |
result_summary = self.run_summary_agent(
|
571 |
+
thought_calls=this_thought_calls,
|
572 |
+
function_response=function_response,
|
573 |
+
temperature=0.1,
|
574 |
+
max_new_tokens=128,
|
575 |
+
max_token=768)
|
576 |
tool_calls = json.loads(input_list[last_call_idx]['tool_calls'])
|
577 |
for tool_call in tool_calls:
|
578 |
del tool_call['call_id']
|
579 |
input_list[last_call_idx]['tool_calls'] = json.dumps(tool_calls)
|
580 |
+
input_list.insert(last_call_idx + 1, {'role': 'tool', 'content': result_summary})
|
|
|
581 |
status['summarized_index'] = last_call_idx + 2
|
582 |
|
583 |
return status
|
|
|
588 |
if hasattr(self, key):
|
589 |
setattr(self, key, value)
|
590 |
updated_attributes[key] = value
|
591 |
+
logger.info("Updated parameters: %s", updated_attributes)
|
592 |
return updated_attributes
|
593 |
|
594 |
+
def run_gradio_chat(self, message: str,
|
595 |
+
history: list,
|
596 |
+
temperature: float,
|
597 |
+
max_new_tokens: int,
|
598 |
+
max_token: int,
|
599 |
+
call_agent: bool,
|
600 |
+
conversation: gr.State,
|
601 |
+
max_round: int = 5,
|
602 |
+
seed: int = None,
|
603 |
+
call_agent_level: int = 0,
|
604 |
+
sub_agent_task: str = None,
|
605 |
uploaded_files: list = None):
|
606 |
+
logger.info("Chat started, message: %s", message[:100])
|
607 |
if not message or len(message.strip()) < 5:
|
608 |
yield "Please provide a valid message or upload files to analyze."
|
609 |
return
|
610 |
|
|
|
|
|
|
|
611 |
picked_tools_prompt, call_agent_level = self.initialize_tools_prompt(
|
612 |
call_agent, call_agent_level, message)
|
613 |
conversation = self.initialize_conversation(
|
|
|
620 |
last_status = {}
|
621 |
token_overflow = False
|
622 |
|
|
|
|
|
|
|
623 |
try:
|
624 |
while next_round and current_round < max_round:
|
625 |
current_round += 1
|
|
|
626 |
if last_outputs:
|
627 |
function_call_messages, picked_tools_prompt, special_tool_call, current_gradio_history = yield from self.run_function_call_stream(
|
628 |
+
last_outputs, return_message=True,
|
629 |
+
existing_tools_prompt=picked_tools_prompt,
|
630 |
+
message_for_call_agent=message,
|
631 |
+
call_agent=call_agent,
|
632 |
+
call_agent_level=call_agent_level,
|
633 |
+
temperature=temperature)
|
634 |
history.extend(current_gradio_history)
|
635 |
|
636 |
if special_tool_call == 'Finish':
|
|
|
639 |
conversation.extend(function_call_messages)
|
640 |
return function_call_messages[0]['content']
|
641 |
|
642 |
+
elif special_tool_call in ['RequireClarification', 'DirectResponse']:
|
643 |
last_msg = history[-1] if history else ChatMessage(role="assistant", content="Response needed.")
|
644 |
history.append(ChatMessage(role="assistant", content=last_msg.content))
|
645 |
yield history
|
|
|
656 |
yield history
|
657 |
else:
|
658 |
next_round = False
|
659 |
+
conversation.append({"role": "assistant", "content": ''.join(last_outputs)})
|
660 |
return ''.join(last_outputs).replace("</s>", "")
|
661 |
|
662 |
+
last_outputs = []
|
|
|
|
|
|
|
|
|
|
|
663 |
last_outputs_str, token_overflow = self.llm_infer(
|
664 |
+
messages=conversation,
|
665 |
+
temperature=temperature,
|
666 |
+
tools=picked_tools_prompt,
|
667 |
+
skip_special_tokens=False,
|
668 |
+
max_new_tokens=max_new_tokens,
|
669 |
+
max_token=max_token,
|
670 |
+
seed=seed,
|
671 |
+
check_token_status=True)
|
672 |
|
673 |
if last_outputs_str is None:
|
674 |
+
logger.warning("Token limit exceeded")
|
675 |
if self.force_finish:
|
676 |
last_outputs_str = self.get_answer_based_on_unfinished_reasoning(
|
677 |
conversation, temperature, max_new_tokens, max_token)
|
|
|
685 |
|
686 |
last_thought = last_outputs_str.split("[TOOL_CALLS]")[0]
|
687 |
for msg in history:
|
688 |
+
if msg.metadata is not None:
|
689 |
msg.metadata['status'] = 'done'
|
690 |
|
691 |
if '[FinalAnswer]' in last_thought:
|
|
|
701 |
|
702 |
last_outputs.append(last_outputs_str)
|
703 |
|
704 |
+
if next_round:
|
705 |
+
if self.force_finish:
|
706 |
+
last_outputs_str = self.get_answer_based_on_unfinished_reasoning(
|
707 |
+
conversation, temperature, max_new_tokens, max_token)
|
708 |
+
parts = last_outputs_str.split('[FinalAnswer]', 1)
|
709 |
+
final_thought, final_answer = parts if len(parts) == 2 else (last_outputs_str, "")
|
710 |
+
history.append(ChatMessage(role="assistant", content=final_thought.strip()))
|
711 |
+
yield history
|
712 |
+
history.append(ChatMessage(role="assistant", content="**🧠 Final Analysis:**\n" + final_answer.strip()))
|
713 |
+
yield history
|
714 |
+
else:
|
715 |
+
yield "Reasoning rounds exceeded limit."
|
716 |
|
717 |
except Exception as e:
|
718 |
logger.error("Exception in run_gradio_chat: %s", e, exc_info=True)
|