Update src/txagent/txagent.py
Browse files- src/txagent/txagent.py +321 -611
src/txagent/txagent.py
CHANGED
@@ -12,33 +12,31 @@ from tooluniverse import ToolUniverse
|
|
12 |
from gradio import ChatMessage
|
13 |
from .toolrag import ToolRAGModel
|
14 |
import torch
|
15 |
-
# near the top of txagent.py
|
16 |
import logging
|
|
|
17 |
logger = logging.getLogger(__name__)
|
18 |
logging.basicConfig(level=logging.INFO)
|
19 |
|
20 |
from .utils import NoRepeatSentenceProcessor, ReasoningTraceChecker, tool_result_format
|
21 |
|
22 |
-
|
23 |
class TxAgent:
|
24 |
def __init__(self, model_name,
|
25 |
rag_model_name,
|
26 |
-
tool_files_dict=None,
|
27 |
enable_finish=True,
|
28 |
enable_rag=True,
|
29 |
enable_summary=False,
|
30 |
-
init_rag_num=
|
31 |
-
step_rag_num=
|
32 |
summary_mode='step',
|
33 |
summary_skip_last_k=0,
|
34 |
summary_context_length=None,
|
35 |
force_finish=True,
|
36 |
avoid_repeat=True,
|
37 |
seed=None,
|
38 |
-
enable_checker=False,
|
39 |
enable_chat=False,
|
40 |
-
additional_default_tools=None
|
41 |
-
):
|
42 |
self.model_name = model_name
|
43 |
self.tokenizer = None
|
44 |
self.terminators = None
|
@@ -47,10 +45,9 @@ class TxAgent:
|
|
47 |
self.model = None
|
48 |
self.rag_model = ToolRAGModel(rag_model_name)
|
49 |
self.tooluniverse = None
|
50 |
-
|
51 |
-
self.
|
52 |
-
self.
|
53 |
-
self.chat_prompt = "You are helpful assistant to chat with the user."
|
54 |
self.enable_finish = enable_finish
|
55 |
self.enable_rag = enable_rag
|
56 |
self.enable_summary = enable_summary
|
@@ -64,7 +61,7 @@ class TxAgent:
|
|
64 |
self.seed = seed
|
65 |
self.enable_checker = enable_checker
|
66 |
self.additional_default_tools = additional_default_tools
|
67 |
-
self.
|
68 |
|
69 |
def init_model(self):
|
70 |
self.load_models()
|
@@ -73,19 +70,19 @@ class TxAgent:
|
|
73 |
|
74 |
def print_self_values(self):
|
75 |
for attr, value in self.__dict__.items():
|
76 |
-
|
77 |
|
78 |
def load_models(self, model_name=None):
|
79 |
-
if model_name is not None:
|
80 |
-
|
81 |
-
|
82 |
self.model_name = model_name
|
83 |
|
84 |
-
self.model = LLM(model=self.model_name)
|
85 |
self.chat_template = Template(self.model.get_tokenizer().chat_template)
|
86 |
self.tokenizer = self.model.get_tokenizer()
|
87 |
-
|
88 |
-
return f"Model {model_name} loaded successfully."
|
89 |
|
90 |
def load_tooluniverse(self):
|
91 |
self.tooluniverse = ToolUniverse(tool_files=self.tool_files_dict)
|
@@ -93,9 +90,11 @@ class TxAgent:
|
|
93 |
special_tools = self.tooluniverse.prepare_tool_prompts(
|
94 |
self.tooluniverse.tool_category_dicts["special_tools"])
|
95 |
self.special_tools_name = [tool['name'] for tool in special_tools]
|
|
|
96 |
|
97 |
def load_tool_desc_embedding(self):
|
98 |
self.rag_model.load_tool_desc_embedding(self.tooluniverse)
|
|
|
99 |
|
100 |
def rag_infer(self, query, top_k=5):
|
101 |
return self.rag_model.rag_infer(query, top_k)
|
@@ -109,7 +108,7 @@ class TxAgent:
|
|
109 |
if call_agent_level >= 2:
|
110 |
call_agent = False
|
111 |
|
112 |
-
if not call_agent:
|
113 |
picked_tools_prompt += self.tool_RAG(
|
114 |
message=message, rag_num=self.init_rag_num)
|
115 |
return picked_tools_prompt, call_agent_level
|
@@ -118,293 +117,198 @@ class TxAgent:
|
|
118 |
if conversation is None:
|
119 |
conversation = []
|
120 |
|
121 |
-
conversation = self.set_system_prompt(
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
else:
|
128 |
-
for i in range(len(history)):
|
129 |
-
if history[i]['role'] == 'user':
|
130 |
-
if i-1 >= 0 and history[i-1]['role'] == 'assistant':
|
131 |
-
conversation.append(
|
132 |
-
{"role": "assistant", "content": history[i-1]['content']})
|
133 |
-
conversation.append(
|
134 |
-
{"role": "user", "content": history[i]['content']})
|
135 |
-
if i == len(history)-1 and history[i]['role'] == 'assistant':
|
136 |
-
conversation.append(
|
137 |
-
{"role": "assistant", "content": history[i]['content']})
|
138 |
-
|
139 |
conversation.append({"role": "user", "content": message})
|
140 |
-
|
141 |
return conversation
|
142 |
|
143 |
-
def tool_RAG(self, message=None,
|
144 |
-
|
145 |
-
|
146 |
-
rag_num=5,
|
147 |
-
return_call_result=False):
|
148 |
-
extra_factor = 30 # Factor to retrieve more than rag_num
|
149 |
if picked_tool_names is None:
|
150 |
-
|
151 |
-
picked_tool_names = self.rag_infer(
|
152 |
-
message, top_k=rag_num*extra_factor)
|
153 |
-
|
154 |
-
picked_tool_names_no_special = []
|
155 |
-
for tool in picked_tool_names:
|
156 |
-
if tool not in self.special_tools_name:
|
157 |
-
picked_tool_names_no_special.append(tool)
|
158 |
-
picked_tool_names_no_special = picked_tool_names_no_special[:rag_num]
|
159 |
-
picked_tool_names = picked_tool_names_no_special[:rag_num]
|
160 |
|
|
|
|
|
|
|
|
|
161 |
picked_tools = self.tooluniverse.get_tool_by_name(picked_tool_names)
|
162 |
-
picked_tools_prompt = self.tooluniverse.prepare_tool_prompts(
|
163 |
-
|
164 |
if return_call_result:
|
165 |
return picked_tools_prompt, picked_tool_names
|
166 |
return picked_tools_prompt
|
167 |
|
168 |
def add_special_tools(self, tools, call_agent=False):
|
169 |
if self.enable_finish:
|
170 |
-
tools.append(self.tooluniverse.get_one_tool_by_one_name(
|
171 |
-
|
172 |
-
print("Finish tool is added")
|
173 |
if call_agent:
|
174 |
-
tools.append(self.tooluniverse.get_one_tool_by_one_name(
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
tool_prompt = self.tooluniverse.get_one_tool_by_one_name(
|
186 |
-
each_tool_name, return_prompt=True)
|
187 |
-
if tool_prompt is not None:
|
188 |
-
print(f"{each_tool_name} tool is added")
|
189 |
-
tools.append(tool_prompt)
|
190 |
return tools
|
191 |
|
192 |
def add_finish_tools(self, tools):
|
193 |
-
tools.append(self.tooluniverse.get_one_tool_by_one_name(
|
194 |
-
|
195 |
-
print("Finish tool is added")
|
196 |
return tools
|
197 |
|
198 |
def set_system_prompt(self, conversation, sys_prompt):
|
199 |
-
if
|
200 |
-
conversation.append(
|
201 |
-
{"role": "system", "content": sys_prompt})
|
202 |
else:
|
203 |
conversation[0] = {"role": "system", "content": sys_prompt}
|
204 |
return conversation
|
205 |
|
206 |
-
def run_function_call(self, fcall_str,
|
207 |
-
|
208 |
-
|
209 |
-
message_for_call_agent=None,
|
210 |
-
call_agent=False,
|
211 |
-
call_agent_level=None,
|
212 |
-
temperature=None):
|
213 |
-
|
214 |
function_call_json, message = self.tooluniverse.extract_function_call_json(
|
215 |
fcall_str, return_message=return_message, verbose=False)
|
216 |
call_results = []
|
217 |
special_tool_call = ''
|
218 |
-
if function_call_json
|
219 |
-
if isinstance(function_call_json, list):
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
else:
|
249 |
-
call_result = "Error: The CallAgent has been disabled. Please proceed with your reasoning process to solve this question."
|
250 |
-
else:
|
251 |
-
call_result = self.tooluniverse.run_one_function(
|
252 |
-
function_call_json[i])
|
253 |
-
|
254 |
-
call_id = self.tooluniverse.call_id_gen()
|
255 |
-
function_call_json[i]["call_id"] = call_id
|
256 |
-
print("\033[94mTool Call Result:\033[0m", call_result)
|
257 |
-
call_results.append({
|
258 |
-
"role": "tool",
|
259 |
-
"content": json.dumps({"tool_name": function_call_json[i]["name"], "content": call_result, "call_id": call_id})
|
260 |
-
})
|
261 |
else:
|
262 |
call_results.append({
|
263 |
"role": "tool",
|
264 |
-
"content": json.dumps({"content": "
|
265 |
})
|
266 |
|
267 |
revised_messages = [{
|
268 |
"role": "assistant",
|
269 |
-
"content": message.strip(),
|
270 |
"tool_calls": json.dumps(function_call_json)
|
271 |
}] + call_results
|
272 |
-
|
273 |
-
# Yield the final result.
|
274 |
return revised_messages, existing_tools_prompt, special_tool_call
|
275 |
|
276 |
-
def run_function_call_stream(self, fcall_str,
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
call_agent=False,
|
281 |
-
call_agent_level=None,
|
282 |
-
temperature=None,
|
283 |
-
return_gradio_history=True):
|
284 |
-
|
285 |
function_call_json, message = self.tooluniverse.extract_function_call_json(
|
286 |
fcall_str, return_message=return_message, verbose=False)
|
287 |
call_results = []
|
288 |
special_tool_call = ''
|
289 |
-
if return_gradio_history
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
else:
|
334 |
-
call_result = self.tooluniverse.run_one_function(
|
335 |
-
function_call_json[i])
|
336 |
-
|
337 |
-
call_id = self.tooluniverse.call_id_gen()
|
338 |
-
function_call_json[i]["call_id"] = call_id
|
339 |
-
call_results.append({
|
340 |
-
"role": "tool",
|
341 |
-
"content": json.dumps({"tool_name": function_call_json[i]["name"], "content": call_result, "call_id": call_id})
|
342 |
-
})
|
343 |
-
if return_gradio_history and function_call_json[i]["name"] != 'Finish':
|
344 |
-
if function_call_json[i]["name"] == 'Tool_RAG':
|
345 |
-
gradio_history.append(ChatMessage(role="assistant", content=str(call_result), metadata={
|
346 |
-
"title": "🧰 "+function_call_json[i]['name'], "log": str(function_call_json[i]['arguments'])}))
|
347 |
-
else:
|
348 |
-
gradio_history.append(ChatMessage(role="assistant", content=str(call_result), metadata={
|
349 |
-
"title": "⚒️ "+function_call_json[i]['name'], "log": str(function_call_json[i]['arguments'])}))
|
350 |
else:
|
351 |
call_results.append({
|
352 |
"role": "tool",
|
353 |
-
"content": json.dumps({"content": "
|
354 |
})
|
355 |
|
356 |
revised_messages = [{
|
357 |
"role": "assistant",
|
358 |
-
"content": message.strip(),
|
359 |
"tool_calls": json.dumps(function_call_json)
|
360 |
}] + call_results
|
|
|
361 |
|
362 |
-
|
363 |
-
|
364 |
-
else:
|
365 |
-
return revised_messages, existing_tools_prompt, special_tool_call
|
366 |
-
|
367 |
-
|
368 |
-
def get_answer_based_on_unfinished_reasoning(self, conversation, temperature, max_new_tokens, max_token, outputs=None):
|
369 |
-
if conversation[-1]['role'] == 'assisant':
|
370 |
conversation.append(
|
371 |
-
{'role': 'tool', 'content': 'Errors
|
372 |
finish_tools_prompt = self.add_finish_tools([])
|
|
|
|
|
|
|
|
|
|
|
373 |
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
output_begin_string='Since I cannot continue reasoning, I will provide the final answer based on the current information and general knowledge.\n\n[FinalAnswer]',
|
378 |
-
skip_special_tokens=True,
|
379 |
-
max_new_tokens=max_new_tokens, max_token=max_token)
|
380 |
-
print(last_outputs_str)
|
381 |
-
return last_outputs_str
|
382 |
-
|
383 |
-
def run_multistep_agent(self, message: str,
|
384 |
-
temperature: float,
|
385 |
-
max_new_tokens: int,
|
386 |
-
max_token: int,
|
387 |
-
max_round: int = 20,
|
388 |
-
call_agent=False,
|
389 |
-
call_agent_level=0) -> str:
|
390 |
-
"""
|
391 |
-
Generate a streaming response using the llama3-8b model.
|
392 |
-
Args:
|
393 |
-
message (str): The input message.
|
394 |
-
temperature (float): The temperature for generating the response.
|
395 |
-
max_new_tokens (int): The maximum number of new tokens to generate.
|
396 |
-
Returns:
|
397 |
-
str: The generated response.
|
398 |
-
"""
|
399 |
-
print("\033[1;32;40mstart\033[0m")
|
400 |
picked_tools_prompt, call_agent_level = self.initialize_tools_prompt(
|
401 |
call_agent, call_agent_level, message)
|
402 |
conversation = self.initialize_conversation(message)
|
403 |
-
|
404 |
outputs = []
|
405 |
last_outputs = []
|
406 |
next_round = True
|
407 |
-
function_call_messages = []
|
408 |
current_round = 0
|
409 |
token_overflow = False
|
410 |
enable_summary = False
|
@@ -412,103 +316,70 @@ class TxAgent:
|
|
412 |
|
413 |
if self.enable_checker:
|
414 |
checker = ReasoningTraceChecker(message, conversation)
|
415 |
-
try:
|
416 |
-
while next_round and current_round < max_round:
|
417 |
-
current_round += 1
|
418 |
-
if len(outputs) > 0:
|
419 |
-
function_call_messages, picked_tools_prompt, special_tool_call = self.run_function_call(
|
420 |
-
last_outputs, return_message=True,
|
421 |
-
existing_tools_prompt=picked_tools_prompt,
|
422 |
-
message_for_call_agent=message,
|
423 |
-
call_agent=call_agent,
|
424 |
-
call_agent_level=call_agent_level,
|
425 |
-
temperature=temperature)
|
426 |
-
|
427 |
-
if special_tool_call == 'Finish':
|
428 |
-
next_round = False
|
429 |
-
conversation.extend(function_call_messages)
|
430 |
-
if isinstance(function_call_messages[0]['content'], types.GeneratorType):
|
431 |
-
function_call_messages[0]['content'] = next(
|
432 |
-
function_call_messages[0]['content'])
|
433 |
-
content = function_call_messages[0]['content']
|
434 |
-
if content is None:
|
435 |
-
return "❌ No content returned after Finish tool call."
|
436 |
-
return content.split('[FinalAnswer]')[-1]
|
437 |
|
438 |
-
|
439 |
-
|
440 |
-
|
441 |
-
|
442 |
-
|
443 |
-
|
444 |
-
|
445 |
-
|
446 |
-
|
447 |
-
|
448 |
-
|
449 |
-
|
450 |
-
|
451 |
-
|
452 |
-
|
453 |
-
|
454 |
-
|
455 |
-
|
456 |
-
|
457 |
-
|
458 |
-
|
459 |
-
|
460 |
-
break
|
461 |
-
last_outputs = []
|
462 |
-
outputs.append("### TxAgent:\n")
|
463 |
-
last_outputs_str, token_overflow = self.llm_infer(messages=conversation,
|
464 |
-
temperature=temperature,
|
465 |
-
tools=picked_tools_prompt,
|
466 |
-
skip_special_tokens=False,
|
467 |
-
max_new_tokens=max_new_tokens, max_token=max_token,
|
468 |
-
check_token_status=True)
|
469 |
-
if last_outputs_str is None:
|
470 |
-
print("The number of tokens exceeds the maximum limit.")
|
471 |
-
if self.force_finish:
|
472 |
-
return self.get_answer_based_on_unfinished_reasoning(conversation, temperature, max_new_tokens, max_token)
|
473 |
-
else:
|
474 |
-
return "❌ Token limit exceeded — no further steps possible."
|
475 |
else:
|
476 |
-
|
477 |
-
|
478 |
-
|
479 |
-
if self.
|
480 |
-
|
481 |
-
|
482 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
483 |
|
484 |
-
|
485 |
-
|
486 |
-
|
487 |
-
|
488 |
-
|
489 |
-
|
490 |
|
491 |
def build_logits_processor(self, messages, llm):
|
492 |
-
# Use the tokenizer from the LLM instance.
|
493 |
tokenizer = llm.get_tokenizer()
|
494 |
if self.avoid_repeat and len(messages) > 2:
|
495 |
-
assistant_messages = [
|
496 |
-
|
497 |
-
|
498 |
-
|
499 |
-
if len(assistant_messages) == 2:
|
500 |
-
break
|
501 |
-
forbidden_ids = [tokenizer.encode(
|
502 |
-
msg, add_special_tokens=False) for msg in assistant_messages]
|
503 |
return [NoRepeatSentenceProcessor(forbidden_ids, 5)]
|
504 |
-
|
505 |
-
return None
|
506 |
|
507 |
-
def llm_infer(self, messages, temperature=0.1, tools=None,
|
508 |
-
|
509 |
-
max_token=None, skip_special_tokens=True,
|
510 |
model=None, tokenizer=None, terminators=None, seed=None, check_token_status=False):
|
511 |
-
|
512 |
if model is None:
|
513 |
model = self.model
|
514 |
|
@@ -516,333 +387,207 @@ class TxAgent:
|
|
516 |
sampling_params = SamplingParams(
|
517 |
temperature=temperature,
|
518 |
max_tokens=max_new_tokens,
|
519 |
-
|
520 |
seed=seed if seed is not None else self.seed,
|
|
|
521 |
)
|
522 |
|
523 |
-
prompt = self.chat_template.render(
|
524 |
-
|
525 |
-
if output_begin_string is not None:
|
526 |
prompt += output_begin_string
|
527 |
|
528 |
-
if check_token_status and max_token
|
529 |
-
|
530 |
-
num_input_tokens
|
531 |
-
|
532 |
-
|
533 |
-
|
534 |
-
|
535 |
-
|
536 |
-
print("Number of input tokens before inference:",
|
537 |
-
num_input_tokens)
|
538 |
-
logger.info(
|
539 |
-
"The number of tokens exceeds the maximum limit!!!!")
|
540 |
-
token_overflow = True
|
541 |
-
return None, token_overflow
|
542 |
-
output = model.generate(
|
543 |
-
prompt,
|
544 |
-
sampling_params=sampling_params,
|
545 |
-
)
|
546 |
-
output = output[0].outputs[0].text
|
547 |
-
print("\033[92m" + output + "\033[0m")
|
548 |
-
if check_token_status and max_token is not None:
|
549 |
-
return output, token_overflow
|
550 |
|
|
|
|
|
|
|
|
|
|
|
|
|
551 |
return output
|
552 |
|
553 |
-
def run_self_agent(self, message: str,
|
554 |
-
|
555 |
-
|
556 |
-
max_token: int) -> str:
|
557 |
-
|
558 |
-
print("\033[1;32;40mstart self agent\033[0m")
|
559 |
-
conversation = []
|
560 |
-
conversation = self.set_system_prompt(conversation, self.self_prompt)
|
561 |
conversation.append({"role": "user", "content": message})
|
562 |
-
return self.llm_infer(messages=conversation,
|
563 |
-
temperature=temperature,
|
564 |
-
tools=None,
|
565 |
max_new_tokens=max_new_tokens, max_token=max_token)
|
566 |
|
567 |
-
def run_chat_agent(self, message: str,
|
568 |
-
|
569 |
-
|
570 |
-
max_token: int) -> str:
|
571 |
-
|
572 |
-
print("\033[1;32;40mstart chat agent\033[0m")
|
573 |
-
conversation = []
|
574 |
-
conversation = self.set_system_prompt(conversation, self.chat_prompt)
|
575 |
conversation.append({"role": "user", "content": message})
|
576 |
-
return self.llm_infer(messages=conversation,
|
577 |
-
temperature=temperature,
|
578 |
-
tools=None,
|
579 |
max_new_tokens=max_new_tokens, max_token=max_token)
|
580 |
|
581 |
-
def run_format_agent(self, message: str,
|
582 |
-
|
583 |
-
temperature: float,
|
584 |
-
max_new_tokens: int,
|
585 |
-
max_token: int) -> str:
|
586 |
-
|
587 |
-
print("\033[1;32;40mstart format agent\033[0m")
|
588 |
if '[FinalAnswer]' in answer:
|
589 |
possible_final_answer = answer.split("[FinalAnswer]")[-1]
|
590 |
elif "\n\n" in answer:
|
591 |
possible_final_answer = answer.split("\n\n")[-1]
|
592 |
else:
|
593 |
possible_final_answer = answer.strip()
|
594 |
-
|
595 |
-
|
596 |
-
|
597 |
-
|
598 |
-
|
599 |
-
|
600 |
-
|
601 |
-
|
602 |
-
|
603 |
-
|
604 |
-
|
605 |
-
conversation = []
|
606 |
-
format_prompt = f"You are helpful assistant to transform the answer of agent to the final answer of 'A', 'B', 'C', 'D'."
|
607 |
-
conversation = self.set_system_prompt(conversation, format_prompt)
|
608 |
-
conversation.append({"role": "user", "content": message +
|
609 |
-
"\nThe final answer of agent:" + answer + "\n The answer is (must be a letter):"})
|
610 |
-
return self.llm_infer(messages=conversation,
|
611 |
-
temperature=temperature,
|
612 |
-
tools=None,
|
613 |
max_new_tokens=max_new_tokens, max_token=max_token)
|
614 |
|
615 |
-
def run_summary_agent(self, thought_calls: str,
|
616 |
-
|
617 |
-
|
618 |
-
|
619 |
-
|
620 |
-
|
621 |
-
|
622 |
-
|
623 |
-
Function calls' responses:
|
624 |
-
\"\"\"
|
625 |
-
{function_response}
|
626 |
-
\"\"\"
|
627 |
-
Based on the Thought and function calls, and the function calls' responses, you need to generate a summary of the function calls' responses that fulfills the requirements of the thought. The summary MUST BE ONE sentence and include all necessary information.
|
628 |
-
Directly respond with the summarized sentence of the function calls' responses only.
|
629 |
-
Generate **one summarized sentence** about "function calls' responses" with necessary information, and respond with a string:
|
630 |
-
""".format(thought_calls=thought_calls, function_response=function_response)
|
631 |
-
conversation = []
|
632 |
-
conversation.append(
|
633 |
-
{"role": "user", "content": generate_tool_result_summary_training_prompt})
|
634 |
-
output = self.llm_infer(messages=conversation,
|
635 |
-
temperature=temperature,
|
636 |
-
tools=None,
|
637 |
max_new_tokens=max_new_tokens, max_token=max_token)
|
638 |
-
|
639 |
if '[' in output:
|
640 |
output = output.split('[')[0]
|
641 |
return output
|
642 |
|
643 |
def function_result_summary(self, input_list, status, enable_summary):
|
644 |
-
"""
|
645 |
-
Processes the input list, extracting information from sequences of 'user', 'tool', 'assistant' roles.
|
646 |
-
Supports 'length' and 'step' modes, and skips the last 'k' groups.
|
647 |
-
Parameters:
|
648 |
-
input_list (list): A list of dictionaries containing role and other information.
|
649 |
-
summary_skip_last_k (int): Number of groups to skip from the end. Defaults to 0.
|
650 |
-
summary_context_length (int): The context length threshold for the 'length' mode.
|
651 |
-
last_processed_index (tuple or int): The last processed index.
|
652 |
-
Returns:
|
653 |
-
list: A list of extracted information from valid sequences.
|
654 |
-
"""
|
655 |
if 'tool_call_step' not in status:
|
656 |
status['tool_call_step'] = 0
|
|
|
|
|
|
|
657 |
|
658 |
for idx in range(len(input_list)):
|
659 |
-
pos_id = len(input_list)-idx-1
|
660 |
-
if input_list[pos_id]['role'] == 'assistant':
|
661 |
-
if '
|
662 |
-
|
663 |
-
status['tool_call_step'] += 1
|
664 |
break
|
665 |
|
666 |
-
if 'step' in status:
|
667 |
-
status['step'] += 1
|
668 |
-
else:
|
669 |
-
status['step'] = 0
|
670 |
-
|
671 |
if not enable_summary:
|
672 |
return status
|
673 |
|
674 |
if 'summarized_index' not in status:
|
675 |
status['summarized_index'] = 0
|
676 |
-
|
677 |
if 'summarized_step' not in status:
|
678 |
status['summarized_step'] = 0
|
679 |
-
|
680 |
if 'previous_length' not in status:
|
681 |
status['previous_length'] = 0
|
682 |
-
|
683 |
if 'history' not in status:
|
684 |
status['history'] = []
|
685 |
|
686 |
-
|
687 |
-
|
688 |
-
current_summarized_index = status['summarized_index']
|
689 |
-
|
690 |
-
status['history'].append(self.summary_mode == 'step' and status['summarized_step']
|
691 |
-
< status['step']-status['tool_call_step']-self.summary_skip_last_k)
|
692 |
|
693 |
-
idx =
|
|
|
|
|
694 |
while idx < len(input_list):
|
695 |
-
if (self.summary_mode == 'step' and status['summarized_step'] < status['step']-status['tool_call_step']-self.summary_skip_last_k) or
|
696 |
-
|
697 |
if input_list[idx]['role'] == 'assistant':
|
698 |
if 'Tool_RAG' in str(input_list[idx]['tool_calls']):
|
699 |
this_thought_calls = None
|
700 |
else:
|
701 |
-
if
|
702 |
-
print("internal summary")
|
703 |
status['summarized_step'] += 1
|
704 |
result_summary = self.run_summary_agent(
|
705 |
-
thought_calls=this_thought_calls,
|
706 |
-
|
707 |
-
temperature=0.1,
|
708 |
-
max_new_tokens=1024,
|
709 |
-
max_token=99999
|
710 |
-
)
|
711 |
-
|
712 |
input_list.insert(
|
713 |
-
last_call_idx+1, {'role': 'tool', 'content': result_summary})
|
714 |
status['summarized_index'] = last_call_idx + 2
|
715 |
idx += 1
|
716 |
-
|
717 |
last_call_idx = idx
|
718 |
-
this_thought_calls = input_list[idx]['content'] +
|
719 |
-
input_list[idx]['tool_calls']
|
720 |
function_response = ''
|
721 |
-
|
722 |
-
elif input_list[idx]['role'] == 'tool' and this_thought_calls is not None:
|
723 |
function_response += input_list[idx]['content']
|
724 |
del input_list[idx]
|
725 |
idx -= 1
|
726 |
-
|
727 |
else:
|
728 |
break
|
729 |
idx += 1
|
730 |
|
731 |
-
if
|
732 |
status['summarized_step'] += 1
|
733 |
result_summary = self.run_summary_agent(
|
734 |
-
thought_calls=this_thought_calls,
|
735 |
-
|
736 |
-
temperature=0.1,
|
737 |
-
max_new_tokens=1024,
|
738 |
-
max_token=99999
|
739 |
-
)
|
740 |
-
|
741 |
tool_calls = json.loads(input_list[last_call_idx]['tool_calls'])
|
742 |
for tool_call in tool_calls:
|
743 |
del tool_call['call_id']
|
744 |
input_list[last_call_idx]['tool_calls'] = json.dumps(tool_calls)
|
745 |
input_list.insert(
|
746 |
-
last_call_idx+1, {'role': 'tool', 'content': result_summary})
|
747 |
status['summarized_index'] = last_call_idx + 2
|
748 |
|
749 |
return status
|
750 |
|
751 |
-
# Following are Gradio related functions
|
752 |
-
|
753 |
-
# General update method that accepts any new arguments through kwargs
|
754 |
def update_parameters(self, **kwargs):
|
|
|
755 |
for key, value in kwargs.items():
|
756 |
if hasattr(self, key):
|
757 |
setattr(self, key, value)
|
758 |
-
|
759 |
-
|
760 |
-
updated_attributes = {key: value for key,
|
761 |
-
value in kwargs.items() if hasattr(self, key)}
|
762 |
return updated_attributes
|
763 |
|
764 |
-
def run_gradio_chat(self, message: str,
|
765 |
-
|
766 |
-
|
767 |
-
|
768 |
-
|
769 |
-
|
770 |
-
conversation: gr.State,
|
771 |
-
max_round: int = 20,
|
772 |
-
seed: int = None,
|
773 |
-
call_agent_level: int = 0,
|
774 |
-
sub_agent_task: str = None,
|
775 |
-
uploaded_files: list = None) -> str:
|
776 |
-
"""
|
777 |
-
Generate a streaming response using the loaded model.
|
778 |
-
Args:
|
779 |
-
message (str): The input message (with file content if uploaded).
|
780 |
-
history (list): The conversation history used by ChatInterface.
|
781 |
-
temperature (float): Sampling temperature.
|
782 |
-
max_new_tokens (int): Max new tokens.
|
783 |
-
max_token (int): Max total tokens allowed.
|
784 |
-
Returns:
|
785 |
-
str: Final assistant message.
|
786 |
-
"""
|
787 |
-
logger.debug(f"[TxAgent] Chat started, message: {message[:100]}...")
|
788 |
-
print("\033[1;32;40m[TxAgent] Chat started\033[0m")
|
789 |
-
|
790 |
if not message or len(message.strip()) < 5:
|
791 |
yield "Please provide a valid message or upload files to analyze."
|
792 |
-
return
|
793 |
|
794 |
if message.startswith("[\U0001f9f0 Tool_RAG") or message.startswith("⚒️"):
|
795 |
-
return
|
796 |
-
|
797 |
-
outputs = []
|
798 |
-
outputs_str = ''
|
799 |
-
last_outputs = []
|
800 |
|
801 |
picked_tools_prompt, call_agent_level = self.initialize_tools_prompt(
|
802 |
-
call_agent,
|
803 |
-
call_agent_level,
|
804 |
-
message)
|
805 |
-
|
806 |
conversation = self.initialize_conversation(
|
807 |
-
message,
|
808 |
-
conversation=conversation,
|
809 |
-
history=history)
|
810 |
history = []
|
811 |
|
812 |
next_round = True
|
813 |
-
function_call_messages = []
|
814 |
current_round = 0
|
815 |
enable_summary = False
|
816 |
last_status = {}
|
817 |
token_overflow = False
|
818 |
|
819 |
if self.enable_checker:
|
820 |
-
checker = ReasoningTraceChecker(
|
821 |
-
message, conversation, init_index=len(conversation))
|
822 |
|
823 |
try:
|
824 |
while next_round and current_round < max_round:
|
825 |
current_round += 1
|
826 |
-
|
827 |
-
|
828 |
if last_outputs:
|
829 |
function_call_messages, picked_tools_prompt, special_tool_call, current_gradio_history = yield from self.run_function_call_stream(
|
830 |
-
last_outputs, return_message=True,
|
831 |
-
|
832 |
-
|
833 |
-
call_agent=call_agent,
|
834 |
-
call_agent_level=call_agent_level,
|
835 |
-
temperature=temperature)
|
836 |
-
|
837 |
history.extend(current_gradio_history)
|
838 |
|
839 |
-
if special_tool_call == 'Finish'
|
840 |
yield history
|
841 |
next_round = False
|
842 |
conversation.extend(function_call_messages)
|
843 |
return function_call_messages[0]['content']
|
844 |
|
845 |
-
|
846 |
last_msg = history[-1] if history else ChatMessage(role="assistant", content="Response needed.")
|
847 |
history.append(ChatMessage(role="assistant", content=last_msg.content))
|
848 |
yield history
|
@@ -851,64 +596,46 @@ Generate **one summarized sentence** about "function calls' responses" with nece
|
|
851 |
|
852 |
if (self.enable_summary or token_overflow) and not call_agent:
|
853 |
enable_summary = True
|
854 |
-
|
855 |
last_status = self.function_result_summary(
|
856 |
-
conversation, status=last_status,
|
857 |
-
enable_summary=enable_summary)
|
858 |
|
859 |
if function_call_messages:
|
860 |
conversation.extend(function_call_messages)
|
861 |
yield history
|
862 |
else:
|
863 |
next_round = False
|
864 |
-
conversation.append({"role": "assistant", "content": ''.join(last_outputs)})
|
865 |
return ''.join(last_outputs).replace("</s>", "")
|
866 |
|
867 |
if self.enable_checker:
|
868 |
good_status, wrong_info = checker.check_conversation()
|
869 |
if not good_status:
|
870 |
-
|
871 |
break
|
872 |
|
873 |
-
last_outputs = []
|
874 |
last_outputs_str, token_overflow = self.llm_infer(
|
875 |
-
messages=conversation,
|
876 |
-
|
877 |
-
tools=picked_tools_prompt,
|
878 |
-
skip_special_tokens=False,
|
879 |
-
max_new_tokens=max_new_tokens,
|
880 |
-
max_token=max_token,
|
881 |
-
seed=seed,
|
882 |
-
check_token_status=True)
|
883 |
-
|
884 |
-
logger.debug(f"llm_infer output: {last_outputs_str[:100] if last_outputs_str else None}, token_overflow: {token_overflow}")
|
885 |
|
886 |
if last_outputs_str is None:
|
887 |
-
logger.warning("llm_infer returned None due to token overflow")
|
888 |
if self.force_finish:
|
889 |
last_outputs_str = self.get_answer_based_on_unfinished_reasoning(
|
890 |
conversation, temperature, max_new_tokens, max_token)
|
891 |
history.append(ChatMessage(role="assistant", content=last_outputs_str.strip()))
|
892 |
yield history
|
893 |
return last_outputs_str
|
894 |
-
|
895 |
-
|
896 |
-
|
897 |
-
|
898 |
-
return error_msg
|
899 |
|
900 |
last_thought = last_outputs_str.split("[TOOL_CALLS]")[0]
|
901 |
-
|
902 |
for msg in history:
|
903 |
-
if msg.metadata
|
904 |
msg.metadata['status'] = 'done'
|
905 |
|
906 |
if '[FinalAnswer]' in last_thought:
|
907 |
parts = last_thought.split('[FinalAnswer]', 1)
|
908 |
-
if len(parts) == 2
|
909 |
-
final_thought, final_answer = parts
|
910 |
-
else:
|
911 |
-
final_thought, final_answer = last_thought, ""
|
912 |
history.append(ChatMessage(role="assistant", content=final_thought.strip()))
|
913 |
yield history
|
914 |
history.append(ChatMessage(role="assistant", content="**🧠 Final Analysis:**\n" + final_answer.strip()))
|
@@ -919,45 +646,28 @@ Generate **one summarized sentence** about "function calls' responses" with nece
|
|
919 |
|
920 |
last_outputs.append(last_outputs_str)
|
921 |
|
922 |
-
if next_round:
|
923 |
-
|
924 |
-
|
925 |
-
|
926 |
-
|
927 |
-
|
928 |
-
|
929 |
-
|
930 |
-
|
931 |
-
final_thought, final_answer = last_outputs_str, ""
|
932 |
-
history.append(ChatMessage(role="assistant", content=final_thought.strip()))
|
933 |
-
yield history
|
934 |
-
history.append(ChatMessage(role="assistant", content="**🧠 Final Analysis:**\n" + final_answer.strip()))
|
935 |
-
yield history
|
936 |
-
else:
|
937 |
-
history.append(ChatMessage(role="assistant", content=last_outputs_str.strip()))
|
938 |
-
yield history
|
939 |
-
else:
|
940 |
-
yield "The number of reasoning rounds exceeded the limit."
|
941 |
|
942 |
except Exception as e:
|
943 |
-
logger.error(
|
944 |
-
error_msg = f"
|
945 |
history.append(ChatMessage(role="assistant", content=error_msg))
|
946 |
yield history
|
947 |
if self.force_finish:
|
948 |
last_outputs_str = self.get_answer_based_on_unfinished_reasoning(
|
949 |
conversation, temperature, max_new_tokens, max_token)
|
950 |
-
|
951 |
-
|
952 |
-
|
953 |
-
|
954 |
-
|
955 |
-
|
956 |
-
history.append(ChatMessage(role="assistant", content=final_thought.strip()))
|
957 |
-
yield history
|
958 |
-
history.append(ChatMessage(role="assistant", content="**🧠 Final Analysis:**\n" + final_answer.strip()))
|
959 |
-
yield history
|
960 |
-
else:
|
961 |
-
history.append(ChatMessage(role="assistant", content=last_outputs_str.strip()))
|
962 |
-
yield history
|
963 |
return error_msg
|
|
|
12 |
from gradio import ChatMessage
|
13 |
from .toolrag import ToolRAGModel
|
14 |
import torch
|
|
|
15 |
import logging
|
16 |
+
|
17 |
logger = logging.getLogger(__name__)
|
18 |
logging.basicConfig(level=logging.INFO)
|
19 |
|
20 |
from .utils import NoRepeatSentenceProcessor, ReasoningTraceChecker, tool_result_format
|
21 |
|
|
|
22 |
class TxAgent:
|
23 |
def __init__(self, model_name,
|
24 |
rag_model_name,
|
25 |
+
tool_files_dict=None,
|
26 |
enable_finish=True,
|
27 |
enable_rag=True,
|
28 |
enable_summary=False,
|
29 |
+
init_rag_num=2, # Reduced for faster initial tool selection
|
30 |
+
step_rag_num=4, # Reduced for fewer RAG calls
|
31 |
summary_mode='step',
|
32 |
summary_skip_last_k=0,
|
33 |
summary_context_length=None,
|
34 |
force_finish=True,
|
35 |
avoid_repeat=True,
|
36 |
seed=None,
|
37 |
+
enable_checker=False, # Disabled by default for speed
|
38 |
enable_chat=False,
|
39 |
+
additional_default_tools=None):
|
|
|
40 |
self.model_name = model_name
|
41 |
self.tokenizer = None
|
42 |
self.terminators = None
|
|
|
45 |
self.model = None
|
46 |
self.rag_model = ToolRAGModel(rag_model_name)
|
47 |
self.tooluniverse = None
|
48 |
+
self.prompt_multi_step = "You are a medical assistant solving clinical oversight issues step-by-step using provided tools."
|
49 |
+
self.self_prompt = "Follow instructions precisely."
|
50 |
+
self.chat_prompt = "You are a helpful assistant for clinical queries."
|
|
|
51 |
self.enable_finish = enable_finish
|
52 |
self.enable_rag = enable_rag
|
53 |
self.enable_summary = enable_summary
|
|
|
61 |
self.seed = seed
|
62 |
self.enable_checker = enable_checker
|
63 |
self.additional_default_tools = additional_default_tools
|
64 |
+
logger.debug("TxAgent initialized with parameters: %s", self.__dict__)
|
65 |
|
66 |
def init_model(self):
|
67 |
self.load_models()
|
|
|
70 |
|
71 |
def print_self_values(self):
|
72 |
for attr, value in self.__dict__.items():
|
73 |
+
logger.debug("%s: %s", attr, value)
|
74 |
|
75 |
def load_models(self, model_name=None):
|
76 |
+
if model_name is not None and model_name == self.model_name:
|
77 |
+
return f"The model {model_name} is already loaded."
|
78 |
+
if model_name:
|
79 |
self.model_name = model_name
|
80 |
|
81 |
+
self.model = LLM(model=self.model_name, dtype="float16") # Enable FP16
|
82 |
self.chat_template = Template(self.model.get_tokenizer().chat_template)
|
83 |
self.tokenizer = self.model.get_tokenizer()
|
84 |
+
logger.info("Model %s loaded successfully", self.model_name)
|
85 |
+
return f"Model {self.model_name} loaded successfully."
|
86 |
|
87 |
def load_tooluniverse(self):
|
88 |
self.tooluniverse = ToolUniverse(tool_files=self.tool_files_dict)
|
|
|
90 |
special_tools = self.tooluniverse.prepare_tool_prompts(
|
91 |
self.tooluniverse.tool_category_dicts["special_tools"])
|
92 |
self.special_tools_name = [tool['name'] for tool in special_tools]
|
93 |
+
logger.debug("ToolUniverse loaded with %d special tools", len(self.special_tools_name))
|
94 |
|
95 |
def load_tool_desc_embedding(self):
|
96 |
self.rag_model.load_tool_desc_embedding(self.tooluniverse)
|
97 |
+
logger.debug("Tool description embeddings loaded")
|
98 |
|
99 |
def rag_infer(self, query, top_k=5):
|
100 |
return self.rag_model.rag_infer(query, top_k)
|
|
|
108 |
if call_agent_level >= 2:
|
109 |
call_agent = False
|
110 |
|
111 |
+
if not call_agent and self.enable_rag:
|
112 |
picked_tools_prompt += self.tool_RAG(
|
113 |
message=message, rag_num=self.init_rag_num)
|
114 |
return picked_tools_prompt, call_agent_level
|
|
|
117 |
if conversation is None:
|
118 |
conversation = []
|
119 |
|
120 |
+
conversation = self.set_system_prompt(conversation, self.prompt_multi_step)
|
121 |
+
if history:
|
122 |
+
conversation.extend(
|
123 |
+
{"role": h['role'], "content": h['content']}
|
124 |
+
for h in history if h['role'] in ['user', 'assistant']
|
125 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
conversation.append({"role": "user", "content": message})
|
127 |
+
logger.debug("Conversation initialized with %d messages", len(conversation))
|
128 |
return conversation
|
129 |
|
130 |
+
def tool_RAG(self, message=None, picked_tool_names=None,
|
131 |
+
existing_tools_prompt=None, rag_num=4, return_call_result=False):
|
132 |
+
extra_factor = 10 # Reduced from 30 for efficiency
|
|
|
|
|
|
|
133 |
if picked_tool_names is None:
|
134 |
+
picked_tool_names = self.rag_infer(message, top_k=rag_num * extra_factor)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
|
136 |
+
picked_tool_names = [
|
137 |
+
tool for tool in picked_tool_names
|
138 |
+
if tool not in self.special_tools_name
|
139 |
+
][:rag_num]
|
140 |
picked_tools = self.tooluniverse.get_tool_by_name(picked_tool_names)
|
141 |
+
picked_tools_prompt = self.tooluniverse.prepare_tool_prompts(picked_tools)
|
142 |
+
logger.debug("RAG selected %d tools: %s", len(picked_tool_names), picked_tool_names)
|
143 |
if return_call_result:
|
144 |
return picked_tools_prompt, picked_tool_names
|
145 |
return picked_tools_prompt
|
146 |
|
147 |
def add_special_tools(self, tools, call_agent=False):
|
148 |
if self.enable_finish:
|
149 |
+
tools.append(self.tooluniverse.get_one_tool_by_one_name('Finish', return_prompt=True))
|
150 |
+
logger.debug("Finish tool added")
|
|
|
151 |
if call_agent:
|
152 |
+
tools.append(self.tooluniverse.get_one_tool_by_one_name('CallAgent', return_prompt=True))
|
153 |
+
logger.debug("CallAgent tool added")
|
154 |
+
elif self.enable_rag:
|
155 |
+
tools.append(self.tooluniverse.get_one_tool_by_one_name('Tool_RAG', return_prompt=True))
|
156 |
+
logger.debug("Tool_RAG tool added")
|
157 |
+
if self.additional_default_tools:
|
158 |
+
for tool_name in self.additional_default_tools:
|
159 |
+
tool_prompt = self.tooluniverse.get_one_tool_by_one_name(tool_name, return_prompt=True)
|
160 |
+
if tool_prompt:
|
161 |
+
tools.append(tool_prompt)
|
162 |
+
logger.debug("%s tool added", tool_name)
|
|
|
|
|
|
|
|
|
|
|
163 |
return tools
|
164 |
|
165 |
def add_finish_tools(self, tools):
|
166 |
+
tools.append(self.tooluniverse.get_one_tool_by_one_name('Finish', return_prompt=True))
|
167 |
+
logger.debug("Finish tool added")
|
|
|
168 |
return tools
|
169 |
|
170 |
def set_system_prompt(self, conversation, sys_prompt):
|
171 |
+
if not conversation:
|
172 |
+
conversation.append({"role": "system", "content": sys_prompt})
|
|
|
173 |
else:
|
174 |
conversation[0] = {"role": "system", "content": sys_prompt}
|
175 |
return conversation
|
176 |
|
177 |
+
def run_function_call(self, fcall_str, return_message=False,
|
178 |
+
existing_tools_prompt=None, message_for_call_agent=None,
|
179 |
+
call_agent=False, call_agent_level=None, temperature=None):
|
|
|
|
|
|
|
|
|
|
|
180 |
function_call_json, message = self.tooluniverse.extract_function_call_json(
|
181 |
fcall_str, return_message=return_message, verbose=False)
|
182 |
call_results = []
|
183 |
special_tool_call = ''
|
184 |
+
if function_call_json:
|
185 |
+
for func in function_call_json if isinstance(function_call_json, list) else [function_call_json]:
|
186 |
+
logger.debug("Tool Call: %s", func)
|
187 |
+
if func["name"] == 'Finish':
|
188 |
+
special_tool_call = 'Finish'
|
189 |
+
break
|
190 |
+
elif func["name"] == 'Tool_RAG':
|
191 |
+
new_tools_prompt, call_result = self.tool_RAG(
|
192 |
+
message=message, existing_tools_prompt=existing_tools_prompt,
|
193 |
+
rag_num=self.step_rag_num, return_call_result=True)
|
194 |
+
existing_tools_prompt += new_tools_prompt
|
195 |
+
elif func["name"] == 'CallAgent' and call_agent and call_agent_level < 2:
|
196 |
+
solution_plan = func['arguments']['solution']
|
197 |
+
full_message = (
|
198 |
+
message_for_call_agent + "\nFollow this plan: " + str(solution_plan)
|
199 |
+
)
|
200 |
+
call_result = self.run_multistep_agent(
|
201 |
+
full_message, temperature=temperature, max_new_tokens=512,
|
202 |
+
max_token=2048, call_agent=False, call_agent_level=call_agent_level)
|
203 |
+
call_result = call_result.split('[FinalAnswer]')[-1].strip() if call_result else "⚠️ No content from sub-agent."
|
204 |
+
else:
|
205 |
+
call_result = self.tooluniverse.run_one_function(func)
|
206 |
+
|
207 |
+
call_id = self.tooluniverse.call_id_gen()
|
208 |
+
func["call_id"] = call_id
|
209 |
+
logger.debug("Tool Call Result: %s", call_result)
|
210 |
+
call_results.append({
|
211 |
+
"role": "tool",
|
212 |
+
"content": json.dumps({"tool_name": func["name"], "content": call_result, "call_id": call_id})
|
213 |
+
})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
214 |
else:
|
215 |
call_results.append({
|
216 |
"role": "tool",
|
217 |
+
"content": json.dumps({"content": "Invalid function call format."})
|
218 |
})
|
219 |
|
220 |
revised_messages = [{
|
221 |
"role": "assistant",
|
222 |
+
"content": message.strip() if message else "",
|
223 |
"tool_calls": json.dumps(function_call_json)
|
224 |
}] + call_results
|
|
|
|
|
225 |
return revised_messages, existing_tools_prompt, special_tool_call
|
226 |
|
227 |
+
def run_function_call_stream(self, fcall_str, return_message=False,
|
228 |
+
existing_tools_prompt=None, message_for_call_agent=None,
|
229 |
+
call_agent=False, call_agent_level=None, temperature=None,
|
230 |
+
return_gradio_history=True):
|
|
|
|
|
|
|
|
|
|
|
231 |
function_call_json, message = self.tooluniverse.extract_function_call_json(
|
232 |
fcall_str, return_message=return_message, verbose=False)
|
233 |
call_results = []
|
234 |
special_tool_call = ''
|
235 |
+
gradio_history = [] if return_gradio_history else None
|
236 |
+
if function_call_json:
|
237 |
+
for func in function_call_json if isinstance(function_call_json, list) else [function_call_json]:
|
238 |
+
if func["name"] == 'Finish':
|
239 |
+
special_tool_call = 'Finish'
|
240 |
+
break
|
241 |
+
elif func["name"] == 'Tool_RAG':
|
242 |
+
new_tools_prompt, call_result = self.tool_RAG(
|
243 |
+
message=message, existing_tools_prompt=existing_tools_prompt,
|
244 |
+
rag_num=self.step_rag_num, return_call_result=True)
|
245 |
+
existing_tools_prompt += new_tools_prompt
|
246 |
+
elif func["name"] == 'DirectResponse':
|
247 |
+
call_result = func['arguments']['response']
|
248 |
+
special_tool_call = 'DirectResponse'
|
249 |
+
elif func["name"] == 'RequireClarification':
|
250 |
+
call_result = func['arguments']['unclear_question']
|
251 |
+
special_tool_call = 'RequireClarification'
|
252 |
+
elif func["name"] == 'CallAgent' and call_agent and call_agent_level < 2:
|
253 |
+
solution_plan = func['arguments']['solution']
|
254 |
+
full_message = (
|
255 |
+
message_for_call_agent + "\nFollow this plan: " + str(solution_plan)
|
256 |
+
)
|
257 |
+
sub_agent_task = "Sub TxAgent plan: " + str(solution_plan)
|
258 |
+
call_result = yield from self.run_gradio_chat(
|
259 |
+
full_message, history=[], temperature=temperature,
|
260 |
+
max_new_tokens=512, max_token=2048, call_agent=False,
|
261 |
+
call_agent_level=call_agent_level, conversation=None,
|
262 |
+
sub_agent_task=sub_agent_task)
|
263 |
+
call_result = call_result.split('[FinalAnswer]')[-1] if call_result else "⚠️ No content from sub-agent."
|
264 |
+
else:
|
265 |
+
call_result = self.tooluniverse.run_one_function(func)
|
266 |
+
|
267 |
+
call_id = self.tooluniverse.call_id_gen()
|
268 |
+
func["call_id"] = call_id
|
269 |
+
call_results.append({
|
270 |
+
"role": "tool",
|
271 |
+
"content": json.dumps({"tool_name": func["name"], "content": call_result, "call_id": call_id})
|
272 |
+
})
|
273 |
+
if return_gradio_history and func["name"] != 'Finish':
|
274 |
+
title = f"{'🧰' if func['name'] == 'Tool_RAG' else '⚒️'} {func['name']}"
|
275 |
+
gradio_history.append(ChatMessage(
|
276 |
+
role="assistant", content=str(call_result),
|
277 |
+
metadata={"title": title, "log": str(func['arguments'])}
|
278 |
+
))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
279 |
else:
|
280 |
call_results.append({
|
281 |
"role": "tool",
|
282 |
+
"content": json.dumps({"content": "Invalid function call format."})
|
283 |
})
|
284 |
|
285 |
revised_messages = [{
|
286 |
"role": "assistant",
|
287 |
+
"content": message.strip() if message else "",
|
288 |
"tool_calls": json.dumps(function_call_json)
|
289 |
}] + call_results
|
290 |
+
return revised_messages, existing_tools_prompt, special_tool_call, gradio_history
|
291 |
|
292 |
+
def get_answer_based_on_unfinished_reasoning(self, conversation, temperature, max_new_tokens, max_token):
|
293 |
+
if conversation[-1]['role'] == 'assistant':
|
|
|
|
|
|
|
|
|
|
|
|
|
294 |
conversation.append(
|
295 |
+
{'role': 'tool', 'content': 'Errors occurred; provide final answer with current info.'})
|
296 |
finish_tools_prompt = self.add_finish_tools([])
|
297 |
+
output = self.llm_infer(
|
298 |
+
messages=conversation, temperature=temperature, tools=finish_tools_prompt,
|
299 |
+
output_begin_string='[FinalAnswer]', max_new_tokens=max_new_tokens, max_token=max_token)
|
300 |
+
logger.debug("Unfinished reasoning output: %s", output)
|
301 |
+
return output
|
302 |
|
303 |
+
def run_multistep_agent(self, message: str, temperature: float, max_new_tokens: int,
|
304 |
+
max_token: int, max_round: int = 10, call_agent=False, call_agent_level=0):
|
305 |
+
logger.debug("Starting multistep agent for message: %s", message[:100])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
306 |
picked_tools_prompt, call_agent_level = self.initialize_tools_prompt(
|
307 |
call_agent, call_agent_level, message)
|
308 |
conversation = self.initialize_conversation(message)
|
|
|
309 |
outputs = []
|
310 |
last_outputs = []
|
311 |
next_round = True
|
|
|
312 |
current_round = 0
|
313 |
token_overflow = False
|
314 |
enable_summary = False
|
|
|
316 |
|
317 |
if self.enable_checker:
|
318 |
checker = ReasoningTraceChecker(message, conversation)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
319 |
|
320 |
+
while next_round and current_round < max_round:
|
321 |
+
current_round += 1
|
322 |
+
if last_outputs:
|
323 |
+
function_call_messages, picked_tools_prompt, special_tool_call = self.run_function_call(
|
324 |
+
last_outputs, return_message=True, existing_tools_prompt=picked_tools_prompt,
|
325 |
+
message_for_call_agent=message, call_agent=call_agent,
|
326 |
+
call_agent_level=call_agent_level, temperature=temperature)
|
327 |
+
|
328 |
+
if special_tool_call == 'Finish':
|
329 |
+
next_round = False
|
330 |
+
conversation.extend(function_call_messages)
|
331 |
+
content = function_call_messages[0]['content']
|
332 |
+
return content.split('[FinalAnswer]')[-1] if content else "❌ No content after Finish."
|
333 |
+
|
334 |
+
if (self.enable_summary or token_overflow) and not call_agent:
|
335 |
+
enable_summary = True
|
336 |
+
last_status = self.function_result_summary(
|
337 |
+
conversation, status=last_status, enable_summary=enable_summary)
|
338 |
+
|
339 |
+
if function_call_messages:
|
340 |
+
conversation.extend(function_call_messages)
|
341 |
+
outputs.append(tool_result_format(function_call_messages))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
342 |
else:
|
343 |
+
next_round = False
|
344 |
+
return ''.join(last_outputs).replace("</s>", "")
|
345 |
+
|
346 |
+
if self.enable_checker:
|
347 |
+
good_status, wrong_info = checker.check_conversation()
|
348 |
+
if not good_status:
|
349 |
+
logger.warning("Checker error: %s", wrong_info)
|
350 |
+
break
|
351 |
+
|
352 |
+
last_outputs = []
|
353 |
+
last_outputs_str, token_overflow = self.llm_infer(
|
354 |
+
messages=conversation, temperature=temperature, tools=picked_tools_prompt,
|
355 |
+
max_new_tokens=max_new_tokens, max_token=max_token, check_token_status=True)
|
356 |
+
if last_outputs_str is None:
|
357 |
+
if self.force_finish:
|
358 |
+
return self.get_answer_based_on_unfinished_reasoning(
|
359 |
+
conversation, temperature, max_new_tokens, max_token)
|
360 |
+
return "❌ Token limit exceeded."
|
361 |
+
last_outputs.append(last_outputs_str)
|
362 |
|
363 |
+
if current_round >= max_round:
|
364 |
+
logger.warning("Max rounds exceeded")
|
365 |
+
if self.force_finish:
|
366 |
+
return self.get_answer_based_on_unfinished_reasoning(
|
367 |
+
conversation, temperature, max_new_tokens, max_token)
|
368 |
+
return None
|
369 |
|
370 |
def build_logits_processor(self, messages, llm):
|
|
|
371 |
tokenizer = llm.get_tokenizer()
|
372 |
if self.avoid_repeat and len(messages) > 2:
|
373 |
+
assistant_messages = [
|
374 |
+
m['content'] for m in messages[-3:] if m['role'] == 'assistant'
|
375 |
+
][:2]
|
376 |
+
forbidden_ids = [tokenizer.encode(msg, add_special_tokens=False) for msg in assistant_messages]
|
|
|
|
|
|
|
|
|
377 |
return [NoRepeatSentenceProcessor(forbidden_ids, 5)]
|
378 |
+
return None
|
|
|
379 |
|
380 |
+
def llm_infer(self, messages, temperature=0.1, tools=None, output_begin_string=None,
|
381 |
+
max_new_tokens=512, max_token=2048, skip_special_tokens=True,
|
|
|
382 |
model=None, tokenizer=None, terminators=None, seed=None, check_token_status=False):
|
|
|
383 |
if model is None:
|
384 |
model = self.model
|
385 |
|
|
|
387 |
sampling_params = SamplingParams(
|
388 |
temperature=temperature,
|
389 |
max_tokens=max_new_tokens,
|
|
|
390 |
seed=seed if seed is not None else self.seed,
|
391 |
+
logits_processors=logits_processor
|
392 |
)
|
393 |
|
394 |
+
prompt = self.chat_template.render(messages=messages, tools=tools, add_generation_prompt=True)
|
395 |
+
if output_begin_string:
|
|
|
396 |
prompt += output_begin_string
|
397 |
|
398 |
+
if check_token_status and max_token:
|
399 |
+
num_input_tokens = len(self.tokenizer.encode(prompt, return_tensors="pt")[0])
|
400 |
+
if num_input_tokens > max_token:
|
401 |
+
torch.cuda.empty_cache()
|
402 |
+
gc.collect()
|
403 |
+
logger.info("Token overflow: %d > %d", num_input_tokens, max_token)
|
404 |
+
return None, True
|
405 |
+
logger.debug("Input tokens: %d", num_input_tokens)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
406 |
|
407 |
+
output = model.generate(prompt, sampling_params=sampling_params)
|
408 |
+
output = output[0].outputs[0].text
|
409 |
+
logger.debug("Inference output: %s", output[:100])
|
410 |
+
torch.cuda.empty_cache() # Clear CUDA cache
|
411 |
+
if check_token_status:
|
412 |
+
return output, False
|
413 |
return output
|
414 |
|
415 |
+
def run_self_agent(self, message: str, temperature: float, max_new_tokens: int, max_token: int):
|
416 |
+
logger.debug("Starting self agent")
|
417 |
+
conversation = self.set_system_prompt([], self.self_prompt)
|
|
|
|
|
|
|
|
|
|
|
418 |
conversation.append({"role": "user", "content": message})
|
419 |
+
return self.llm_infer(messages=conversation, temperature=temperature,
|
|
|
|
|
420 |
max_new_tokens=max_new_tokens, max_token=max_token)
|
421 |
|
422 |
+
def run_chat_agent(self, message: str, temperature: float, max_new_tokens: int, max_token: int):
|
423 |
+
logger.debug("Starting chat agent")
|
424 |
+
conversation = self.set_system_prompt([], self.chat_prompt)
|
|
|
|
|
|
|
|
|
|
|
425 |
conversation.append({"role": "user", "content": message})
|
426 |
+
return self.llm_infer(messages=conversation, temperature=temperature,
|
|
|
|
|
427 |
max_new_tokens=max_new_tokens, max_token=max_token)
|
428 |
|
429 |
+
def run_format_agent(self, message: str, answer: str, temperature: float, max_new_tokens: int, max_token: int):
|
430 |
+
logger.debug("Starting format agent")
|
|
|
|
|
|
|
|
|
|
|
431 |
if '[FinalAnswer]' in answer:
|
432 |
possible_final_answer = answer.split("[FinalAnswer]")[-1]
|
433 |
elif "\n\n" in answer:
|
434 |
possible_final_answer = answer.split("\n\n")[-1]
|
435 |
else:
|
436 |
possible_final_answer = answer.strip()
|
437 |
+
|
438 |
+
if len(possible_final_answer) >= 1 and possible_final_answer[0] in ['A', 'B', 'C', 'D', 'E']:
|
439 |
+
return possible_final_answer[0]
|
440 |
+
elif len(possible_final_answer) > 1 and possible_final_answer[1] == ':' and possible_final_answer[0] in ['A', 'B', 'C', 'D', 'E']:
|
441 |
+
return possible_final_answer[0]
|
442 |
+
|
443 |
+
conversation = self.set_system_prompt(
|
444 |
+
[], "Transform the answer to a single letter: 'A', 'B', 'C', 'D', or 'E'.")
|
445 |
+
conversation.append({"role": "user", "content": f"Original: {message}\nAnswer: {answer}\nFinal answer (letter):"})
|
446 |
+
return self.llm_infer(messages=conversation, temperature=temperature,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
447 |
max_new_tokens=max_new_tokens, max_token=max_token)
|
448 |
|
449 |
+
def run_summary_agent(self, thought_calls: str, function_response: str,
|
450 |
+
temperature: float, max_new_tokens: int, max_token: int):
|
451 |
+
logger.debug("Starting summary agent")
|
452 |
+
prompt = f"""Thought and function calls: {thought_calls}
|
453 |
+
Function responses: {function_response}
|
454 |
+
Summarize the function responses in one sentence with all necessary information."""
|
455 |
+
conversation = [{"role": "user", "content": prompt}]
|
456 |
+
output = self.llm_infer(messages=conversation, temperature=temperature,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
457 |
max_new_tokens=max_new_tokens, max_token=max_token)
|
|
|
458 |
if '[' in output:
|
459 |
output = output.split('[')[0]
|
460 |
return output
|
461 |
|
462 |
def function_result_summary(self, input_list, status, enable_summary):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
463 |
if 'tool_call_step' not in status:
|
464 |
status['tool_call_step'] = 0
|
465 |
+
if 'step' not in status:
|
466 |
+
status['step'] = 0
|
467 |
+
status['step'] += 1
|
468 |
|
469 |
for idx in range(len(input_list)):
|
470 |
+
pos_id = len(input_list) - idx - 1
|
471 |
+
if input_list[pos_id]['role'] == 'assistant' and 'tool_calls' in input_list[pos_id]:
|
472 |
+
if 'Tool_RAG' in str(input_list[pos_id]['tool_calls']):
|
473 |
+
status['tool_call_step'] += 1
|
|
|
474 |
break
|
475 |
|
|
|
|
|
|
|
|
|
|
|
476 |
if not enable_summary:
|
477 |
return status
|
478 |
|
479 |
if 'summarized_index' not in status:
|
480 |
status['summarized_index'] = 0
|
|
|
481 |
if 'summarized_step' not in status:
|
482 |
status['summarized_step'] = 0
|
|
|
483 |
if 'previous_length' not in status:
|
484 |
status['previous_length'] = 0
|
|
|
485 |
if 'history' not in status:
|
486 |
status['history'] = []
|
487 |
|
488 |
+
status['history'].append(
|
489 |
+
self.summary_mode == 'step' and status['summarized_step'] < status['step'] - status['tool_call_step'] - self.summary_skip_last_k)
|
|
|
|
|
|
|
|
|
490 |
|
491 |
+
idx = status['summarized_index']
|
492 |
+
function_response = ''
|
493 |
+
this_thought_calls = None
|
494 |
while idx < len(input_list):
|
495 |
+
if (self.summary_mode == 'step' and status['summarized_step'] < status['step'] - status['tool_call_step'] - self.summary_skip_last_k) or \
|
496 |
+
(self.summary_mode == 'length' and status['previous_length'] > self.summary_context_length):
|
497 |
if input_list[idx]['role'] == 'assistant':
|
498 |
if 'Tool_RAG' in str(input_list[idx]['tool_calls']):
|
499 |
this_thought_calls = None
|
500 |
else:
|
501 |
+
if function_response:
|
|
|
502 |
status['summarized_step'] += 1
|
503 |
result_summary = self.run_summary_agent(
|
504 |
+
thought_calls=this_thought_calls, function_response=function_response,
|
505 |
+
temperature=0.1, max_new_tokens=512, max_token=2048)
|
|
|
|
|
|
|
|
|
|
|
506 |
input_list.insert(
|
507 |
+
last_call_idx + 1, {'role': 'tool', 'content': result_summary})
|
508 |
status['summarized_index'] = last_call_idx + 2
|
509 |
idx += 1
|
|
|
510 |
last_call_idx = idx
|
511 |
+
this_thought_calls = input_list[idx]['content'] + input_list[idx]['tool_calls']
|
|
|
512 |
function_response = ''
|
513 |
+
elif input_list[idx]['role'] == 'tool' and this_thought_calls:
|
|
|
514 |
function_response += input_list[idx]['content']
|
515 |
del input_list[idx]
|
516 |
idx -= 1
|
|
|
517 |
else:
|
518 |
break
|
519 |
idx += 1
|
520 |
|
521 |
+
if function_response:
|
522 |
status['summarized_step'] += 1
|
523 |
result_summary = self.run_summary_agent(
|
524 |
+
thought_calls=this_thought_calls, function_response=function_response,
|
525 |
+
temperature=0.1, max_new_tokens=512, max_token=2048)
|
|
|
|
|
|
|
|
|
|
|
526 |
tool_calls = json.loads(input_list[last_call_idx]['tool_calls'])
|
527 |
for tool_call in tool_calls:
|
528 |
del tool_call['call_id']
|
529 |
input_list[last_call_idx]['tool_calls'] = json.dumps(tool_calls)
|
530 |
input_list.insert(
|
531 |
+
last_call_idx + 1, {'role': 'tool', 'content': result_summary})
|
532 |
status['summarized_index'] = last_call_idx + 2
|
533 |
|
534 |
return status
|
535 |
|
|
|
|
|
|
|
536 |
def update_parameters(self, **kwargs):
|
537 |
+
updated_attributes = {}
|
538 |
for key, value in kwargs.items():
|
539 |
if hasattr(self, key):
|
540 |
setattr(self, key, value)
|
541 |
+
updated_attributes[key] = value
|
542 |
+
logger.debug("Updated parameters: %s", updated_attributes)
|
|
|
|
|
543 |
return updated_attributes
|
544 |
|
545 |
+
def run_gradio_chat(self, message: str, history: list, temperature: float,
|
546 |
+
max_new_tokens: int, max_token: int, call_agent: bool,
|
547 |
+
conversation: gr.State, max_round: int = 10, seed: int = None,
|
548 |
+
call_agent_level: int = 0, sub_agent_task: str = None,
|
549 |
+
uploaded_files: list = None):
|
550 |
+
logger.debug("Chat started, message: %s", message[:100])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
551 |
if not message or len(message.strip()) < 5:
|
552 |
yield "Please provide a valid message or upload files to analyze."
|
553 |
+
return
|
554 |
|
555 |
if message.startswith("[\U0001f9f0 Tool_RAG") or message.startswith("⚒️"):
|
556 |
+
return
|
|
|
|
|
|
|
|
|
557 |
|
558 |
picked_tools_prompt, call_agent_level = self.initialize_tools_prompt(
|
559 |
+
call_agent, call_agent_level, message)
|
|
|
|
|
|
|
560 |
conversation = self.initialize_conversation(
|
561 |
+
message, conversation, history)
|
|
|
|
|
562 |
history = []
|
563 |
|
564 |
next_round = True
|
|
|
565 |
current_round = 0
|
566 |
enable_summary = False
|
567 |
last_status = {}
|
568 |
token_overflow = False
|
569 |
|
570 |
if self.enable_checker:
|
571 |
+
checker = ReasoningTraceChecker(message, conversation, init_index=len(conversation))
|
|
|
572 |
|
573 |
try:
|
574 |
while next_round and current_round < max_round:
|
575 |
current_round += 1
|
576 |
+
last_outputs = []
|
|
|
577 |
if last_outputs:
|
578 |
function_call_messages, picked_tools_prompt, special_tool_call, current_gradio_history = yield from self.run_function_call_stream(
|
579 |
+
last_outputs, return_message=True, existing_tools_prompt=picked_tools_prompt,
|
580 |
+
message_for_call_agent=message, call_agent=call_agent,
|
581 |
+
call_agent_level=call_agent_level, temperature=temperature)
|
|
|
|
|
|
|
|
|
582 |
history.extend(current_gradio_history)
|
583 |
|
584 |
+
if special_tool_call == 'Finish':
|
585 |
yield history
|
586 |
next_round = False
|
587 |
conversation.extend(function_call_messages)
|
588 |
return function_call_messages[0]['content']
|
589 |
|
590 |
+
if special_tool_call in ['RequireClarification', 'DirectResponse']:
|
591 |
last_msg = history[-1] if history else ChatMessage(role="assistant", content="Response needed.")
|
592 |
history.append(ChatMessage(role="assistant", content=last_msg.content))
|
593 |
yield history
|
|
|
596 |
|
597 |
if (self.enable_summary or token_overflow) and not call_agent:
|
598 |
enable_summary = True
|
|
|
599 |
last_status = self.function_result_summary(
|
600 |
+
conversation, status=last_status, enable_summary=enable_summary)
|
|
|
601 |
|
602 |
if function_call_messages:
|
603 |
conversation.extend(function_call_messages)
|
604 |
yield history
|
605 |
else:
|
606 |
next_round = False
|
|
|
607 |
return ''.join(last_outputs).replace("</s>", "")
|
608 |
|
609 |
if self.enable_checker:
|
610 |
good_status, wrong_info = checker.check_conversation()
|
611 |
if not good_status:
|
612 |
+
logger.warning("Checker error: %s", wrong_info)
|
613 |
break
|
614 |
|
|
|
615 |
last_outputs_str, token_overflow = self.llm_infer(
|
616 |
+
messages=conversation, temperature=temperature, tools=picked_tools_prompt,
|
617 |
+
max_new_tokens=max_new_tokens, max_token=max_token, seed=seed, check_token_status=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
618 |
|
619 |
if last_outputs_str is None:
|
|
|
620 |
if self.force_finish:
|
621 |
last_outputs_str = self.get_answer_based_on_unfinished_reasoning(
|
622 |
conversation, temperature, max_new_tokens, max_token)
|
623 |
history.append(ChatMessage(role="assistant", content=last_outputs_str.strip()))
|
624 |
yield history
|
625 |
return last_outputs_str
|
626 |
+
error_msg = "Token limit exceeded."
|
627 |
+
history.append(ChatMessage(role="assistant", content=error_msg))
|
628 |
+
yield history
|
629 |
+
return error_msg
|
|
|
630 |
|
631 |
last_thought = last_outputs_str.split("[TOOL_CALLS]")[0]
|
|
|
632 |
for msg in history:
|
633 |
+
if msg.metadata:
|
634 |
msg.metadata['status'] = 'done'
|
635 |
|
636 |
if '[FinalAnswer]' in last_thought:
|
637 |
parts = last_thought.split('[FinalAnswer]', 1)
|
638 |
+
final_thought, final_answer = parts if len(parts) == 2 else (last_thought, "")
|
|
|
|
|
|
|
639 |
history.append(ChatMessage(role="assistant", content=final_thought.strip()))
|
640 |
yield history
|
641 |
history.append(ChatMessage(role="assistant", content="**🧠 Final Analysis:**\n" + final_answer.strip()))
|
|
|
646 |
|
647 |
last_outputs.append(last_outputs_str)
|
648 |
|
649 |
+
if next_round and self.force_finish:
|
650 |
+
last_outputs_str = self.get_answer_based_on_unfinished_reasoning(
|
651 |
+
conversation, temperature, max_new_tokens, max_token)
|
652 |
+
parts = last_outputs_str.split('[FinalAnswer]', 1)
|
653 |
+
final_thought, final_answer = parts if len(parts) == 2 else (last_outputs_str, "")
|
654 |
+
history.append(ChatMessage(role="assistant", content=final_thought.strip()))
|
655 |
+
yield history
|
656 |
+
history.append(ChatMessage(role="assistant", content="**🧠 Final Analysis:**\n" + final_answer.strip()))
|
657 |
+
yield history
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
658 |
|
659 |
except Exception as e:
|
660 |
+
logger.error("Exception in run_gradio_chat: %s", e, exc_info=True)
|
661 |
+
error_msg = f"Error: {e}"
|
662 |
history.append(ChatMessage(role="assistant", content=error_msg))
|
663 |
yield history
|
664 |
if self.force_finish:
|
665 |
last_outputs_str = self.get_answer_based_on_unfinished_reasoning(
|
666 |
conversation, temperature, max_new_tokens, max_token)
|
667 |
+
parts = last_outputs_str.split('[FinalAnswer]', 1)
|
668 |
+
final_thought, final_answer = parts if len(parts) == 2 else (last_outputs_str, "")
|
669 |
+
history.append(ChatMessage(role="assistant", content=final_thought.strip()))
|
670 |
+
yield history
|
671 |
+
history.append(ChatMessage(role="assistant", content="**🧠 Final Analysis:**\n" + final_answer.strip()))
|
672 |
+
yield history
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
673 |
return error_msg
|