CPS-Test-Mobile / app.py
Ali2206's picture
Update app.py
e27edaa verified
raw
history blame
21.7 kB
import sys
import os
import pandas as pd
import pdfplumber
import json
import gradio as gr
from typing import List, Dict, Optional, Generator
from concurrent.futures import ThreadPoolExecutor, as_completed
import hashlib
import shutil
import re
import psutil
import subprocess
import logging
import torch
import gc
from diskcache import Cache
import time
from transformers import AutoTokenizer
from functools import lru_cache
import numpy as np
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Constants
MAX_TOKENS = 1800
BATCH_SIZE = 2
MAX_WORKERS = 4
CHUNK_SIZE = 10 # For PDF processing
# Persistent directory setup
persistent_dir = "/data/hf_cache"
os.makedirs(persistent_dir, exist_ok=True)
model_cache_dir = os.path.join(persistent_dir, "txagent_models")
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
file_cache_dir = os.path.join(persistent_dir, "cache")
report_dir = os.path.join(persistent_dir, "reports")
vllm_cache_dir = os.path.join(persistent_dir, "vllm_cache")
for directory in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir, vllm_cache_dir]:
os.makedirs(directory, exist_ok=True)
os.environ.update({
"HF_HOME": model_cache_dir,
"TRANSFORMERS_CACHE": model_cache_dir,
"VLLM_CACHE_DIR": vllm_cache_dir,
"TOKENIZERS_PARALLELISM": "false",
"CUDA_LAUNCH_BLOCKING": "1"
})
current_dir = os.path.dirname(os.path.abspath(__file__))
src_path = os.path.abspath(os.path.join(current_dir, "src"))
sys.path.insert(0, src_path)
from txagent.txagent import TxAgent
# Initialize cache with 10GB limit
cache = Cache(file_cache_dir, size_limit=10 * 1024**3)
# Initialize tokenizer for precise chunking (with caching)
@lru_cache(maxsize=1)
def get_tokenizer():
return AutoTokenizer.from_pretrained("mims-harvard/TxAgent-T1-Llama-3.1-8B")
def sanitize_utf8(text: str) -> str:
"""Optimized UTF-8 sanitization"""
return text.encode("utf-8", "ignore").decode("utf-8")
def file_hash(path: str) -> str:
"""Optimized file hashing with buffer reading"""
hash_md5 = hashlib.md5()
with open(path, "rb") as f:
for chunk in iter(lambda: f.read(4096), b""):
hash_md5.update(chunk)
return hash_md5.hexdigest()
def extract_pdf_page(page) -> str:
"""Optimized single page extraction"""
try:
text = page.extract_text() or ""
return f"=== Page {page.page_number} ===\n{text.strip()}"
except Exception as e:
logger.warning(f"Error extracting page {page.page_number}: {str(e)}")
return ""
def extract_all_pages(file_path: str, progress_callback=None) -> str:
"""Optimized PDF extraction with memory management"""
try:
with pdfplumber.open(file_path) as pdf:
total_pages = len(pdf.pages)
if total_pages == 0:
return ""
# Process in chunks with memory cleanup
results = []
for chunk_start in range(0, total_pages, CHUNK_SIZE):
chunk_end = min(chunk_start + CHUNK_SIZE, total_pages)
with pdfplumber.open(file_path) as pdf:
with ThreadPoolExecutor(max_workers=min(CHUNK_SIZE, 4)) as executor:
futures = [executor.submit(extract_pdf_page, pdf.pages[i])
for i in range(chunk_start, chunk_end)]
for future in as_completed(futures):
results.append(future.result())
if progress_callback:
progress_callback(min(chunk_end, total_pages), total_pages)
# Explicit cleanup
del pdf
gc.collect()
return "\n\n".join(filter(None, results))
except Exception as e:
logger.error(f"PDF processing error: {e}")
return f"PDF processing error: {str(e)}"
def excel_to_json(file_path: str) -> List[Dict]:
"""Optimized Excel processing with chunking"""
try:
# Try fastest engines first
for engine in ['openpyxl', 'xlrd']:
try:
df = pd.read_excel(
file_path,
engine=engine,
header=None,
dtype=str,
na_filter=False
)
return [{
"filename": os.path.basename(file_path),
"rows": df.values.tolist(),
"type": "excel"
}]
except Exception:
continue
raise Exception("No suitable Excel engine found")
except Exception as e:
logger.error(f"Excel processing error: {e}")
return [{"error": f"Excel processing error: {str(e)}"}]
def csv_to_json(file_path: str) -> List[Dict]:
"""Optimized CSV processing with chunking"""
try:
chunks = []
for chunk in pd.read_csv(
file_path,
header=None,
dtype=str,
encoding_errors='replace',
on_bad_lines='skip',
chunksize=10000,
na_filter=False
):
chunks.append(chunk)
df = pd.concat(chunks) if chunks else pd.DataFrame()
return [{
"filename": os.path.basename(file_path),
"rows": df.values.tolist(),
"type": "csv"
}]
except Exception as e:
logger.error(f"CSV processing error: {e}")
return [{"error": f"CSV processing error: {str(e)}"}]
@lru_cache(maxsize=100)
def process_file_cached(file_path: str, file_type: str) -> List[Dict]:
"""Cached file processing with memory optimization"""
try:
if file_type == "pdf":
text = extract_all_pages(file_path)
return [{
"filename": os.path.basename(file_path),
"content": text,
"status": "initial",
"type": "pdf"
}]
elif file_type in ["xls", "xlsx"]:
return excel_to_json(file_path)
elif file_type == "csv":
return csv_to_json(file_path)
else:
return [{"error": f"Unsupported file type: {file_type}"}]
except Exception as e:
logger.error(f"Error processing {os.path.basename(file_path)}: {e}")
return [{"error": f"Error processing {os.path.basename(file_path)}: {str(e)}"}]
def tokenize_and_chunk(text: str, max_tokens: int = MAX_TOKENS) -> List[str]:
"""Optimized tokenization and chunking"""
tokenizer = get_tokenizer()
tokens = tokenizer.encode(text, add_special_tokens=False)
return [
tokenizer.decode(tokens[i:i + max_tokens])
for i in range(0, len(tokens), max_tokens)
]
def log_system_usage(tag=""):
"""Optimized system monitoring"""
try:
cpu = psutil.cpu_percent(interval=0.5)
mem = psutil.virtual_memory()
logger.info(f"[{tag}] CPU: {cpu:.1f}% | RAM: {mem.used // (1024**2)}MB / {mem.total // (1024**2)}MB")
# GPU monitoring with timeout
try:
result = subprocess.run(
["nvidia-smi", "--query-gpu=memory.used,memory.total,utilization.gpu", "--format=csv,nounits,noheader"],
capture_output=True,
text=True,
timeout=2
)
if result.returncode == 0:
used, total, util = result.stdout.strip().split(", ")
logger.info(f"[{tag}] GPU: {used}MB / {total}MB | Utilization: {util}%")
except subprocess.TimeoutExpired:
logger.warning(f"[{tag}] GPU monitoring timed out")
except Exception as e:
logger.error(f"[{tag}] Monitor failed: {e}")
def clean_response(text: str) -> str:
"""Enhanced response cleaning with aggressive artifact removal"""
if not text:
return ""
# Pre-compiled regex patterns for cleaning
patterns = [
(re.compile(r"\[.*?\]|\bNone\b", re.IGNORECASE), ""),
(re.compile(r"To analyze the patient record excerpt.*?medications\.", re.IGNORECASE), ""),
(re.compile(r"Since the previous attempts.*?\.", re.IGNORECASE), ""),
(re.compile(r"I need to.*?medications\.", re.IGNORECASE), ""),
(re.compile(r"Retrieving tools.*?\.", re.IGNORECASE), ""),
(re.compile(r"I will start by retrieving.*?\.", re.IGNORECASE), ""),
(re.compile(r"This requires reviewing.*?\.", re.IGNORECASE), ""),
(re.compile(r"\s+"), " "),
(re.compile(r"[^\w\s\.\,\(\)\-]"), ""),
(re.compile(r"(No missed diagnoses identified\.)\s*\1+", re.IGNORECASE), r"\1"), # Deduplicate
]
for pattern, repl in patterns:
text = pattern.sub(repl, text)
# Deduplicate identical sentences
sentences = text.split(". ")
seen = set()
unique_sentences = [s for s in sentences if s and not (s in seen or seen.add(s))]
text = ". ".join(unique_sentences).strip()
return text if text else "No missed diagnoses identified."
def summarize_findings(combined_response: str) -> str:
"""Enhanced findings summarization for a single, detailed paragraph"""
if not combined_response:
return "No missed diagnoses were identified in the provided records."
# Pre-compiled regex patterns
diagnosis_pattern = re.compile(r"-\s*(.+)$")
section_pattern = re.compile(r"###\s*(Missed Diagnoses|Medication Conflicts|Incomplete Assessments|Urgent Follow-up)")
no_issues_pattern = re.compile(r"No issues identified|No missed diagnoses identified", re.IGNORECASE)
diagnoses = []
current_section = None
for line in combined_response.splitlines():
line = line.strip()
if not line:
continue
# Check section headers
section_match = section_pattern.match(line)
if section_match:
current_section = "diagnoses" if section_match.group(1) == "Missed Diagnoses" else None
continue
# Process diagnosis lines in the correct section
if current_section == "diagnoses":
diagnosis_match = diagnosis_pattern.match(line)
if diagnosis_match and not no_issues_pattern.search(line):
diagnosis = diagnosis_match.group(1).strip()
if diagnosis:
diagnoses.append(diagnosis)
# Extract findings from non-sectioned text (e.g., psychiatric evaluation, medications)
medication_pattern = re.compile(r"medications including ([^\.]+)", re.IGNORECASE)
evaluation_pattern = re.compile(r"psychiatric evaluation.*?mention of ([^\.]+)", re.IGNORECASE)
for line in combined_response.splitlines():
line = line.strip()
if not line or no_issues_pattern.search(line):
continue
med_match = medication_pattern.search(line)
if med_match:
meds = med_match.group(1).strip()
diagnoses.append(f"use of medications ({meds}), which may indicate an undiagnosed psychiatric condition requiring urgent review")
eval_match = evaluation_pattern.search(line)
if eval_match:
details = eval_match.group(1).strip()
diagnoses.append(f"psychiatric evaluation noting {details}, suggesting a potential missed psychiatric diagnosis requiring urgent review")
if not diagnoses:
return "No missed diagnoses were identified in the provided records."
# Remove duplicates while preserving order
seen = set()
unique_diagnoses = [d for d in diagnoses if not (d in seen or seen.add(d))]
# Create a single paragraph
summary = "The patient record indicates missed diagnoses including "
summary += ", ".join(unique_diagnoses[:-1])
summary += f", and {unique_diagnoses[-1]}" if len(unique_diagnoses) > 1 else unique_diagnoses[0]
summary += ". These findings, derived from the provided clinical data, suggest potential oversights in the patient's medical evaluation and require urgent clinical review to prevent adverse outcomes."
return summary
@lru_cache(maxsize=1)
def init_agent():
"""Cached agent initialization with memory optimization"""
logger.info("Initializing model...")
log_system_usage("Before Load")
# Tool setup
default_tool_path = os.path.abspath("data/new_tool.json")
target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
if not os.path.exists(target_tool_path):
shutil.copy(default_tool_path, target_tool_path)
# Initialize with optimized settings
agent = TxAgent(
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
tool_files_dict={"new_tool": target_tool_path},
force_finish=True,
enable_checker=False,
step_rag_num=4,
seed=100,
additional_default_tools=[],
disable_tools=True, # Disable tools to avoid unnecessary calls
max_retries=2, # Limit retries to prevent loops
max_tokens=4096, # Increase token limit for complex inputs
)
agent.init_model()
log_system_usage("After Load")
logger.info("Agent Ready")
return agent
def create_ui(agent):
"""Optimized UI creation with pre-compiled templates"""
PROMPT_TEMPLATE = """
Analyze the patient record excerpt for missed diagnoses only, focusing on clinical findings such as symptoms, medications, or evaluation results. Provide a concise, evidence-based summary as a single paragraph without headings or bullet points. Include specific clinical findings (e.g., 'elevated blood pressure (160/95) on page 10'), their potential implications (e.g., 'may indicate untreated hypertension'), and a recommendation for urgent review. Do not use external tools unless explicitly required by the excerpt, and avoid mentioning other oversight categories like medication conflicts. If no missed diagnoses are found, state 'No missed diagnoses identified' in a single sentence. Use only the information provided in the excerpt below.
Patient Record Excerpt (Chunk {0} of {1}):
{chunk}
"""
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("<h1 style='text-align: center;'>🩺 Clinical Oversight Assistant</h1>")
with gr.Row():
with gr.Column(scale=3):
chatbot = gr.Chatbot(label="Detailed Analysis", height=600, type="messages")
msg_input = gr.Textbox(placeholder="Ask about potential oversights...", show_label=False)
send_btn = gr.Button("Analyze", variant="primary")
file_upload = gr.File(file_types=[".pdf", ".csv", ".xls", ".xlsx"], file_count="multiple")
with gr.Column(scale=1):
final_summary = gr.Markdown(label="Summary of Missed Diagnoses")
download_output = gr.File(label="Download Full Report")
progress_bar = gr.Progress()
def analyze(message: str, history: List[dict], files: List, progress=gr.Progress()):
"""Optimized analysis pipeline with memory management"""
history.append({"role": "user", "content": message})
yield history, None, ""
# Process files with caching
extracted = []
file_hash_value = ""
if files:
for f in files:
file_type = f.name.split(".")[-1].lower()
cache_key = f"{file_hash(f.name)}_{file_type}"
if cache_key in cache:
extracted.extend(cache[cache_key])
else:
result = process_file_cached(f.name, file_type)
cache[cache_key] = result
extracted.extend(result)
file_hash_value = file_hash(files[0].name) if files else ""
history.append({"role": "assistant", "content": "✅ File processing complete"})
yield history, None, ""
# Convert to text with memory efficiency
text_content = "\n".join(json.dumps(item, ensure_ascii=False) for item in extracted)
del extracted
gc.collect()
# Tokenize and chunk
chunks = tokenize_and_chunk(text_content)
del text_content
gc.collect()
combined_response = ""
report_path = None
try:
# Process in optimized batches
for batch_idx in range(0, len(chunks), BATCH_SIZE):
batch_chunks = chunks[batch_idx:batch_idx + BATCH_SIZE]
# Prepare prompts
batch_prompts = [
PROMPT_TEMPLATE.format(
batch_idx + i + 1,
len(chunks),
chunk=chunk[:1800] # Conservative size
)
for i, chunk in enumerate(batch_chunks)
]
progress(batch_idx / len(chunks),
desc=f"Analyzing batch {(batch_idx // BATCH_SIZE) + 1}/{(len(chunks) + BATCH_SIZE - 1) // BATCH_SIZE}")
# Process batch
with ThreadPoolExecutor(max_workers=min(BATCH_SIZE, MAX_WORKERS)) as executor:
futures = {
executor.submit(
agent.run_gradio_chat,
prompt, [], 0.2, 512, 2048, False, []
): idx
for idx, prompt in enumerate(batch_prompts)
}
for future in as_completed(futures):
chunk_idx = futures[future]
chunk_response = ""
try:
for chunk_output in future.result():
if isinstance(chunk_output, (list, str)):
content = ""
if isinstance(chunk_output, list):
content = " ".join(
clean_response(m.content)
for m in chunk_output
if hasattr(m, 'content') and m.content
)
elif isinstance(chunk_output, str):
content = clean_response(chunk_output)
if content and content != "No missed diagnoses identified.":
chunk_response += content + " "
if chunk_response:
combined_response += f"--- Analysis for Chunk {batch_idx + chunk_idx + 1} ---\n{chunk_response.strip()}\n"
history[-1] = {"role": "assistant", "content": combined_response.strip()}
yield history, None, ""
finally:
del future
torch.cuda.empty_cache()
gc.collect()
# Generate final outputs
summary = summarize_findings(combined_response)
if file_hash_value:
report_path = os.path.join(report_dir, f"{file_hash_value}_report.txt")
try:
with open(report_path, "w", encoding="utf-8") as f:
f.write(combined_response + "\n\n" + summary)
except Exception as e:
logger.error(f"Report save failed: {e}")
report_path = None
yield history, report_path, summary
except Exception as e:
logger.error(f"Analysis error: {e}")
history.append({"role": "assistant", "content": f"❌ Error occurred: {str(e)}"})
yield history, None, f"Error occurred during analysis: {str(e)}"
finally:
torch.cuda.empty_cache()
gc.collect()
# Event handlers
send_btn.click(
analyze,
inputs=[msg_input, gr.State([]), file_upload],
outputs=[chatbot, download_output, final_summary]
)
msg_input.submit(
analyze,
inputs=[msg_input, gr.State([]), file_upload],
outputs=[chatbot, download_output, final_summary]
)
return demo
if __name__ == "__main__":
try:
logger.info("Launching optimized app...")
agent = init_agent()
demo = create_ui(agent)
demo.queue(
api_open=False,
max_size=20
).launch(
server_name="0.0.0.0",
server_port=7860,
show_error=True,
allowed_paths=[report_dir],
share=False
)
except Exception as e:
logger.error(f"Fatal error: {e}")
raise
finally:
if torch.distributed.is_initialized():
torch.distributed.destroy_process_group()