|
import sys |
|
import os |
|
import pandas as pd |
|
import pdfplumber |
|
import json |
|
import gradio as gr |
|
from typing import List, Dict, Optional, Generator |
|
from concurrent.futures import ThreadPoolExecutor, as_completed |
|
import hashlib |
|
import shutil |
|
import re |
|
import psutil |
|
import subprocess |
|
import logging |
|
import torch |
|
import gc |
|
from diskcache import Cache |
|
import time |
|
from transformers import AutoTokenizer |
|
from functools import lru_cache |
|
import numpy as np |
|
|
|
|
|
logging.basicConfig(level=logging.INFO) |
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
MAX_TOKENS = 1800 |
|
BATCH_SIZE = 2 |
|
MAX_WORKERS = 4 |
|
CHUNK_SIZE = 10 |
|
|
|
|
|
persistent_dir = "/data/hf_cache" |
|
os.makedirs(persistent_dir, exist_ok=True) |
|
|
|
model_cache_dir = os.path.join(persistent_dir, "txagent_models") |
|
tool_cache_dir = os.path.join(persistent_dir, "tool_cache") |
|
file_cache_dir = os.path.join(persistent_dir, "cache") |
|
report_dir = os.path.join(persistent_dir, "reports") |
|
vllm_cache_dir = os.path.join(persistent_dir, "vllm_cache") |
|
|
|
for directory in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir, vllm_cache_dir]: |
|
os.makedirs(directory, exist_ok=True) |
|
|
|
os.environ.update({ |
|
"HF_HOME": model_cache_dir, |
|
"TRANSFORMERS_CACHE": model_cache_dir, |
|
"VLLM_CACHE_DIR": vllm_cache_dir, |
|
"TOKENIZERS_PARALLELISM": "false", |
|
"CUDA_LAUNCH_BLOCKING": "1" |
|
}) |
|
current_dir = os.path.dirname(os.path.abspath(__file__)) |
|
src_path = os.path.abspath(os.path.join(current_dir, "src")) |
|
sys.path.insert(0, src_path) |
|
|
|
from txagent.txagent import TxAgent |
|
|
|
cache = Cache(file_cache_dir, size_limit=10 * 1024**3) |
|
|
|
|
|
@lru_cache(maxsize=1) |
|
def get_tokenizer(): |
|
return AutoTokenizer.from_pretrained("mims-harvard/TxAgent-T1-Llama-3.1-8B") |
|
|
|
def sanitize_utf8(text: str) -> str: |
|
"""Optimized UTF-8 sanitization""" |
|
return text.encode("utf-8", "ignore").decode("utf-8") |
|
|
|
def file_hash(path: str) -> str: |
|
"""Optimized file hashing with buffer reading""" |
|
hash_md5 = hashlib.md5() |
|
with open(path, "rb") as f: |
|
for chunk in iter(lambda: f.read(4096), b""): |
|
hash_md5.update(chunk) |
|
return hash_md5.hexdigest() |
|
|
|
def extract_pdf_page(page) -> str: |
|
"""Optimized single page extraction""" |
|
try: |
|
text = page.extract_text() or "" |
|
return f"=== Page {page.page_number} ===\n{text.strip()}" |
|
except Exception as e: |
|
logger.warning(f"Error extracting page {page.page_number}: {str(e)}") |
|
return "" |
|
|
|
def extract_all_pages(file_path: str, progress_callback=None) -> str: |
|
"""Optimized PDF extraction with memory management""" |
|
try: |
|
with pdfplumber.open(file_path) as pdf: |
|
total_pages = len(pdf.pages) |
|
if total_pages == 0: |
|
return "" |
|
|
|
|
|
results = [] |
|
for chunk_start in range(0, total_pages, CHUNK_SIZE): |
|
chunk_end = min(chunk_start + CHUNK_SIZE, total_pages) |
|
|
|
with pdfplumber.open(file_path) as pdf: |
|
with ThreadPoolExecutor(max_workers=min(CHUNK_SIZE, 4)) as executor: |
|
futures = [executor.submit(extract_pdf_page, pdf.pages[i]) |
|
for i in range(chunk_start, chunk_end)] |
|
|
|
for future in as_completed(futures): |
|
results.append(future.result()) |
|
|
|
if progress_callback: |
|
progress_callback(min(chunk_end, total_pages), total_pages) |
|
|
|
|
|
del pdf |
|
gc.collect() |
|
|
|
return "\n\n".join(filter(None, results)) |
|
except Exception as e: |
|
logger.error(f"PDF processing error: {e}") |
|
return f"PDF processing error: {str(e)}" |
|
|
|
def excel_to_json(file_path: str) -> List[Dict]: |
|
"""Optimized Excel processing with chunking""" |
|
try: |
|
|
|
for engine in ['openpyxl', 'xlrd']: |
|
try: |
|
df = pd.read_excel( |
|
file_path, |
|
engine=engine, |
|
header=None, |
|
dtype=str, |
|
na_filter=False |
|
) |
|
return [{ |
|
"filename": os.path.basename(file_path), |
|
"rows": df.values.tolist(), |
|
"type": "excel" |
|
}] |
|
except Exception: |
|
continue |
|
raise Exception("No suitable Excel engine found") |
|
except Exception as e: |
|
logger.error(f"Excel processing error: {e}") |
|
return [{"error": f"Excel processing error: {str(e)}"}] |
|
|
|
def csv_to_json(file_path: str) -> List[Dict]: |
|
"""Optimized CSV processing with chunking""" |
|
try: |
|
chunks = [] |
|
for chunk in pd.read_csv( |
|
file_path, |
|
header=None, |
|
dtype=str, |
|
encoding_errors='replace', |
|
on_bad_lines='skip', |
|
chunksize=10000, |
|
na_filter=False |
|
): |
|
chunks.append(chunk) |
|
|
|
df = pd.concat(chunks) if chunks else pd.DataFrame() |
|
return [{ |
|
"filename": os.path.basename(file_path), |
|
"rows": df.values.tolist(), |
|
"type": "csv" |
|
}] |
|
except Exception as e: |
|
logger.error(f"CSV processing error: {e}") |
|
return [{"error": f"CSV processing error: {str(e)}"}] |
|
|
|
@lru_cache(maxsize=100) |
|
def process_file_cached(file_path: str, file_type: str) -> List[Dict]: |
|
"""Cached file processing with memory optimization""" |
|
try: |
|
if file_type == "pdf": |
|
text = extract_all_pages(file_path) |
|
return [{ |
|
"filename": os.path.basename(file_path), |
|
"content": text, |
|
"status": "initial", |
|
"type": "pdf" |
|
}] |
|
elif file_type in ["xls", "xlsx"]: |
|
return excel_to_json(file_path) |
|
elif file_type == "csv": |
|
return csv_to_json(file_path) |
|
else: |
|
return [{"error": f"Unsupported file type: {file_type}"}] |
|
except Exception as e: |
|
logger.error(f"Error processing {os.path.basename(file_path)}: {e}") |
|
return [{"error": f"Error processing {os.path.basename(file_path)}: {str(e)}"}] |
|
|
|
def tokenize_and_chunk(text: str, max_tokens: int = MAX_TOKENS) -> List[str]: |
|
"""Optimized tokenization and chunking""" |
|
tokenizer = get_tokenizer() |
|
tokens = tokenizer.encode(text, add_special_tokens=False) |
|
return [ |
|
tokenizer.decode(tokens[i:i + max_tokens]) |
|
for i in range(0, len(tokens), max_tokens) |
|
] |
|
|
|
def log_system_usage(tag=""): |
|
"""Optimized system monitoring""" |
|
try: |
|
cpu = psutil.cpu_percent(interval=0.5) |
|
mem = psutil.virtual_memory() |
|
logger.info(f"[{tag}] CPU: {cpu:.1f}% | RAM: {mem.used // (1024**2)}MB / {mem.total // (1024**2)}MB") |
|
|
|
|
|
try: |
|
result = subprocess.run( |
|
["nvidia-smi", "--query-gpu=memory.used,memory.total,utilization.gpu", "--format=csv,nounits,noheader"], |
|
capture_output=True, |
|
text=True, |
|
timeout=2 |
|
) |
|
if result.returncode == 0: |
|
used, total, util = result.stdout.strip().split(", ") |
|
logger.info(f"[{tag}] GPU: {used}MB / {total}MB | Utilization: {util}%") |
|
except subprocess.TimeoutExpired: |
|
logger.warning(f"[{tag}] GPU monitoring timed out") |
|
except Exception as e: |
|
logger.error(f"[{tag}] Monitor failed: {e}") |
|
|
|
def clean_response(text: str) -> str: |
|
"""Enhanced response cleaning with aggressive artifact removal""" |
|
if not text: |
|
return "" |
|
|
|
|
|
patterns = [ |
|
(re.compile(r"\[.*?\]|\bNone\b", re.IGNORECASE), ""), |
|
(re.compile(r"To analyze the patient record excerpt.*?medications\.", re.IGNORECASE), ""), |
|
(re.compile(r"Since the previous attempts.*?\.", re.IGNORECASE), ""), |
|
(re.compile(r"I need to.*?medications\.", re.IGNORECASE), ""), |
|
(re.compile(r"Retrieving tools.*?\.", re.IGNORECASE), ""), |
|
(re.compile(r"I will start by retrieving.*?\.", re.IGNORECASE), ""), |
|
(re.compile(r"This requires reviewing.*?\.", re.IGNORECASE), ""), |
|
(re.compile(r"\s+"), " "), |
|
(re.compile(r"[^\w\s\.\,\(\)\-]"), ""), |
|
(re.compile(r"(No missed diagnoses identified\.)\s*\1+", re.IGNORECASE), r"\1"), |
|
] |
|
|
|
for pattern, repl in patterns: |
|
text = pattern.sub(repl, text) |
|
|
|
|
|
sentences = text.split(". ") |
|
seen = set() |
|
unique_sentences = [s for s in sentences if s and not (s in seen or seen.add(s))] |
|
text = ". ".join(unique_sentences).strip() |
|
|
|
return text if text else "No missed diagnoses identified." |
|
|
|
def summarize_findings(combined_response: str) -> str: |
|
"""Enhanced findings summarization for a single, detailed paragraph""" |
|
if not combined_response: |
|
return "No missed diagnoses were identified in the provided records." |
|
|
|
|
|
diagnosis_pattern = re.compile(r"-\s*(.+)$") |
|
section_pattern = re.compile(r"###\s*(Missed Diagnoses|Medication Conflicts|Incomplete Assessments|Urgent Follow-up)") |
|
no_issues_pattern = re.compile(r"No issues identified|No missed diagnoses identified", re.IGNORECASE) |
|
|
|
diagnoses = [] |
|
current_section = None |
|
|
|
for line in combined_response.splitlines(): |
|
line = line.strip() |
|
if not line: |
|
continue |
|
|
|
|
|
section_match = section_pattern.match(line) |
|
if section_match: |
|
current_section = "diagnoses" if section_match.group(1) == "Missed Diagnoses" else None |
|
continue |
|
|
|
|
|
if current_section == "diagnoses": |
|
diagnosis_match = diagnosis_pattern.match(line) |
|
if diagnosis_match and not no_issues_pattern.search(line): |
|
diagnosis = diagnosis_match.group(1).strip() |
|
if diagnosis: |
|
diagnoses.append(diagnosis) |
|
|
|
|
|
medication_pattern = re.compile(r"medications including ([^\.]+)", re.IGNORECASE) |
|
evaluation_pattern = re.compile(r"psychiatric evaluation.*?mention of ([^\.]+)", re.IGNORECASE) |
|
|
|
for line in combined_response.splitlines(): |
|
line = line.strip() |
|
if not line or no_issues_pattern.search(line): |
|
continue |
|
|
|
med_match = medication_pattern.search(line) |
|
if med_match: |
|
meds = med_match.group(1).strip() |
|
diagnoses.append(f"use of medications ({meds}), which may indicate an undiagnosed psychiatric condition requiring urgent review") |
|
|
|
eval_match = evaluation_pattern.search(line) |
|
if eval_match: |
|
details = eval_match.group(1).strip() |
|
diagnoses.append(f"psychiatric evaluation noting {details}, suggesting a potential missed psychiatric diagnosis requiring urgent review") |
|
|
|
if not diagnoses: |
|
return "No missed diagnoses were identified in the provided records." |
|
|
|
|
|
seen = set() |
|
unique_diagnoses = [d for d in diagnoses if not (d in seen or seen.add(d))] |
|
|
|
|
|
summary = "The patient record indicates missed diagnoses including " |
|
summary += ", ".join(unique_diagnoses[:-1]) |
|
summary += f", and {unique_diagnoses[-1]}" if len(unique_diagnoses) > 1 else unique_diagnoses[0] |
|
summary += ". These findings, derived from the provided clinical data, suggest potential oversights in the patient's medical evaluation and require urgent clinical review to prevent adverse outcomes." |
|
|
|
return summary |
|
|
|
@lru_cache(maxsize=1) |
|
def init_agent(): |
|
"""Cached agent initialization with memory optimization""" |
|
logger.info("Initializing model...") |
|
log_system_usage("Before Load") |
|
|
|
|
|
default_tool_path = os.path.abspath("data/new_tool.json") |
|
target_tool_path = os.path.join(tool_cache_dir, "new_tool.json") |
|
if not os.path.exists(target_tool_path): |
|
shutil.copy(default_tool_path, target_tool_path) |
|
|
|
|
|
agent = TxAgent( |
|
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B", |
|
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B", |
|
tool_files_dict={"new_tool": target_tool_path}, |
|
force_finish=True, |
|
enable_checker=False, |
|
step_rag_num=4, |
|
seed=100, |
|
additional_default_tools=[], |
|
disable_tools=True, |
|
max_retries=2, |
|
max_tokens=4096, |
|
) |
|
agent.init_model() |
|
|
|
log_system_usage("After Load") |
|
logger.info("Agent Ready") |
|
return agent |
|
|
|
def create_ui(agent): |
|
"""Optimized UI creation with pre-compiled templates""" |
|
PROMPT_TEMPLATE = """ |
|
Analyze the patient record excerpt for missed diagnoses only, focusing on clinical findings such as symptoms, medications, or evaluation results. Provide a concise, evidence-based summary as a single paragraph without headings or bullet points. Include specific clinical findings (e.g., 'elevated blood pressure (160/95) on page 10'), their potential implications (e.g., 'may indicate untreated hypertension'), and a recommendation for urgent review. Do not use external tools unless explicitly required by the excerpt, and avoid mentioning other oversight categories like medication conflicts. If no missed diagnoses are found, state 'No missed diagnoses identified' in a single sentence. Use only the information provided in the excerpt below. |
|
Patient Record Excerpt (Chunk {0} of {1}): |
|
{chunk} |
|
""" |
|
|
|
with gr.Blocks(theme=gr.themes.Soft()) as demo: |
|
gr.Markdown("<h1 style='text-align: center;'>🩺 Clinical Oversight Assistant</h1>") |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=3): |
|
chatbot = gr.Chatbot(label="Detailed Analysis", height=600, type="messages") |
|
msg_input = gr.Textbox(placeholder="Ask about potential oversights...", show_label=False) |
|
send_btn = gr.Button("Analyze", variant="primary") |
|
file_upload = gr.File(file_types=[".pdf", ".csv", ".xls", ".xlsx"], file_count="multiple") |
|
|
|
with gr.Column(scale=1): |
|
final_summary = gr.Markdown(label="Summary of Missed Diagnoses") |
|
download_output = gr.File(label="Download Full Report") |
|
progress_bar = gr.Progress() |
|
|
|
def analyze(message: str, history: List[dict], files: List, progress=gr.Progress()): |
|
"""Optimized analysis pipeline with memory management""" |
|
history.append({"role": "user", "content": message}) |
|
yield history, None, "" |
|
|
|
|
|
extracted = [] |
|
file_hash_value = "" |
|
|
|
if files: |
|
for f in files: |
|
file_type = f.name.split(".")[-1].lower() |
|
cache_key = f"{file_hash(f.name)}_{file_type}" |
|
|
|
if cache_key in cache: |
|
extracted.extend(cache[cache_key]) |
|
else: |
|
result = process_file_cached(f.name, file_type) |
|
cache[cache_key] = result |
|
extracted.extend(result) |
|
|
|
file_hash_value = file_hash(files[0].name) if files else "" |
|
history.append({"role": "assistant", "content": "✅ File processing complete"}) |
|
yield history, None, "" |
|
|
|
|
|
text_content = "\n".join(json.dumps(item, ensure_ascii=False) for item in extracted) |
|
del extracted |
|
gc.collect() |
|
|
|
|
|
chunks = tokenize_and_chunk(text_content) |
|
del text_content |
|
gc.collect() |
|
|
|
combined_response = "" |
|
report_path = None |
|
|
|
try: |
|
|
|
for batch_idx in range(0, len(chunks), BATCH_SIZE): |
|
batch_chunks = chunks[batch_idx:batch_idx + BATCH_SIZE] |
|
|
|
|
|
batch_prompts = [ |
|
PROMPT_TEMPLATE.format( |
|
batch_idx + i + 1, |
|
len(chunks), |
|
chunk=chunk[:1800] |
|
) |
|
for i, chunk in enumerate(batch_chunks) |
|
] |
|
|
|
progress(batch_idx / len(chunks), |
|
desc=f"Analyzing batch {(batch_idx // BATCH_SIZE) + 1}/{(len(chunks) + BATCH_SIZE - 1) // BATCH_SIZE}") |
|
|
|
|
|
with ThreadPoolExecutor(max_workers=min(BATCH_SIZE, MAX_WORKERS)) as executor: |
|
futures = { |
|
executor.submit( |
|
agent.run_gradio_chat, |
|
prompt, [], 0.2, 512, 2048, False, [] |
|
): idx |
|
for idx, prompt in enumerate(batch_prompts) |
|
} |
|
|
|
for future in as_completed(futures): |
|
chunk_idx = futures[future] |
|
chunk_response = "" |
|
|
|
try: |
|
for chunk_output in future.result(): |
|
if isinstance(chunk_output, (list, str)): |
|
content = "" |
|
if isinstance(chunk_output, list): |
|
content = " ".join( |
|
clean_response(m.content) |
|
for m in chunk_output |
|
if hasattr(m, 'content') and m.content |
|
) |
|
elif isinstance(chunk_output, str): |
|
content = clean_response(chunk_output) |
|
|
|
if content and content != "No missed diagnoses identified.": |
|
chunk_response += content + " " |
|
|
|
if chunk_response: |
|
combined_response += f"--- Analysis for Chunk {batch_idx + chunk_idx + 1} ---\n{chunk_response.strip()}\n" |
|
history[-1] = {"role": "assistant", "content": combined_response.strip()} |
|
yield history, None, "" |
|
finally: |
|
del future |
|
torch.cuda.empty_cache() |
|
gc.collect() |
|
|
|
|
|
summary = summarize_findings(combined_response) |
|
|
|
if file_hash_value: |
|
report_path = os.path.join(report_dir, f"{file_hash_value}_report.txt") |
|
try: |
|
with open(report_path, "w", encoding="utf-8") as f: |
|
f.write(combined_response + "\n\n" + summary) |
|
except Exception as e: |
|
logger.error(f"Report save failed: {e}") |
|
report_path = None |
|
|
|
yield history, report_path, summary |
|
|
|
except Exception as e: |
|
logger.error(f"Analysis error: {e}") |
|
history.append({"role": "assistant", "content": f"❌ Error occurred: {str(e)}"}) |
|
yield history, None, f"Error occurred during analysis: {str(e)}" |
|
finally: |
|
torch.cuda.empty_cache() |
|
gc.collect() |
|
|
|
|
|
send_btn.click( |
|
analyze, |
|
inputs=[msg_input, gr.State([]), file_upload], |
|
outputs=[chatbot, download_output, final_summary] |
|
) |
|
msg_input.submit( |
|
analyze, |
|
inputs=[msg_input, gr.State([]), file_upload], |
|
outputs=[chatbot, download_output, final_summary] |
|
) |
|
|
|
return demo |
|
|
|
if __name__ == "__main__": |
|
try: |
|
logger.info("Launching optimized app...") |
|
agent = init_agent() |
|
demo = create_ui(agent) |
|
demo.queue( |
|
api_open=False, |
|
max_size=20 |
|
).launch( |
|
server_name="0.0.0.0", |
|
server_port=7860, |
|
show_error=True, |
|
allowed_paths=[report_dir], |
|
share=False |
|
) |
|
except Exception as e: |
|
logger.error(f"Fatal error: {e}") |
|
raise |
|
finally: |
|
if torch.distributed.is_initialized(): |
|
torch.distributed.destroy_process_group() |