CPS-Test-Mobile / app.py
Ali2206's picture
Update app.py
cbd84d4 verified
raw
history blame
14.5 kB
import sys
import os
import pandas as pd
import pdfplumber
import json
import gradio as gr
from typing import List
from concurrent.futures import ThreadPoolExecutor, as_completed
import hashlib
import shutil
import re
import psutil
import subprocess
import multiprocessing
from functools import partial
import time
# Persistent directory
persistent_dir = "/data/hf_cache"
os.makedirs(persistent_dir, exist_ok=True)
model_cache_dir = os.path.join(persistent_dir, "txagent_models")
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
file_cache_dir = os.path.join(persistent_dir, "cache")
report_dir = os.path.join(persistent_dir, "reports")
vllm_cache_dir = os.path.join(persistent_dir, "vllm_cache")
for directory in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir, vllm_cache_dir]:
os.makedirs(directory, exist_ok=True)
os.environ["HF_HOME"] = model_cache_dir
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir
os.environ["VLLM_CACHE_DIR"] = vllm_cache_dir
os.environ["TOKENIZERS_PARALLELISM"] = "false"
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
current_dir = os.path.dirname(os.path.abspath(__file__))
src_path = os.path.abspath(os.path.join(current_dir, "src"))
sys.path.insert(0, src_path)
from txagent.txagent import TxAgent
def sanitize_utf8(text: str) -> str:
return text.encode("utf-8", "ignore").decode("utf-8")
def file_hash(path: str) -> str:
with open(path, "rb") as f:
return hashlib.md5(f.read()).hexdigest()
def extract_page_range(file_path: str, start_page: int, end_page: int) -> str:
"""Extract text from a range of PDF pages."""
try:
text_chunks = []
with pdfplumber.open(file_path) as pdf:
for page in pdf.pages[start_page:end_page]:
page_text = page.extract_text() or ""
text_chunks.append(f"=== Page {start_page + pdf.pages.index(page) + 1} ===\n{page_text.strip()}")
return "\n\n".join(text_chunks)
except Exception:
return ""
def extract_all_pages(file_path: str, progress_callback=None) -> str:
"""Extract text from all pages of a PDF using parallel processing."""
try:
with pdfplumber.open(file_path) as pdf:
total_pages = len(pdf.pages)
if total_pages == 0:
return ""
# Use 6 processes (adjust based on CPU cores)
num_processes = min(6, multiprocessing.cpu_count())
pages_per_process = max(1, total_pages // num_processes)
# Create page ranges for parallel processing
ranges = [(i * pages_per_process, min((i + 1) * pages_per_process, total_pages))
for i in range(num_processes)]
if ranges[-1][1] != total_pages:
ranges[-1] = (ranges[-1][0], total_pages)
# Process page ranges in parallel
with multiprocessing.Pool(processes=num_processes) as pool:
extract_func = partial(extract_page_range, file_path)
results = []
for idx, result in enumerate(pool.starmap(extract_func, ranges)):
results.append(result)
if progress_callback:
processed_pages = min((idx + 1) * pages_per_process, total_pages)
progress_callback(processed_pages, total_pages)
return "\n\n".join(filter(None, results))
except Exception as e:
return f"PDF processing error: {str(e)}"
def convert_file_to_json(file_path: str, file_type: str, progress_callback=None) -> str:
try:
h = file_hash(file_path)
cache_path = os.path.join(file_cache_dir, f"{h}.json")
if os.path.exists(cache_path):
with open(cache_path, "r", encoding="utf-8") as f:
return f.read()
if file_type == "pdf":
text = extract_all_pages(file_path, progress_callback)
result = json.dumps({"filename": os.path.basename(file_path), "content": text, "status": "initial"})
elif file_type == "csv":
df = pd.read_csv(file_path, encoding_errors="replace", header=None, dtype=str,
skip_blank_lines=False, on_bad_lines="skip")
content = df.fillna("").astype(str).values.tolist()
result = json.dumps({"filename": os.path.basename(file_path), "rows": content})
elif file_type in ["xls", "xlsx"]:
try:
df = pd.read_excel(file_path, engine="openpyxl", header=None, dtype=str)
except Exception:
df = pd.read_excel(file_path, engine="xlrd", header=None, dtype=str)
content = df.fillna("").astype(str).values.tolist()
result = json.dumps({"filename": os.path.basename(file_path), "rows": content})
else:
result = json.dumps({"error": f"Unsupported file type: {file_type}"})
with open(cache_path, "w", encoding="utf-8") as f:
f.write(result)
return result
except Exception as e:
return json.dumps({"error": f"Error processing {os.path.basename(file_path)}: {str(e)}"})
def log_system_usage(tag=""):
try:
cpu = psutil.cpu_percent(interval=1)
mem = psutil.virtual_memory()
print(f"[{tag}] CPU: {cpu}% | RAM: {mem.used // (1024**2)}MB / {mem.total // (1024**2)}MB")
result = subprocess.run(
["nvidia-smi", "--query-gpu=memory.used,memory.total,utilization.gpu", "--format=csv,nounits,noheader"],
capture_output=True, text=True
)
if result.returncode == 0:
used, total, util = result.stdout.strip().split(", ")
print(f"[{tag}] GPU: {used}MB / {total}MB | Utilization: {util}%")
except Exception as e:
print(f"[{tag}] GPU/CPU monitor failed: {e}")
def clean_response(text: str) -> str:
text = sanitize_utf8(text)
text = re.sub(r"\[TOOL_CALLS\].*", "", text, flags=re.DOTALL)
text = re.sub(r"\n{3,}", "\n\n", text).strip()
return text
def init_agent():
print("πŸ” Initializing model...")
log_system_usage("Before Load")
default_tool_path = os.path.abspath("data/new_tool.json")
target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
if not os.path.exists(target_tool_path):
shutil.copy(default_tool_path, target_tool_path)
agent = TxAgent(
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
tool_files_dict={"new_tool": target_tool_path},
force_finish=True,
enable_checker=True,
step_rag_num=4,
seed=100,
additional_default_tools=[],
)
agent.init_model()
log_system_usage("After Load")
print("βœ… Agent Ready")
return agent
def create_ui(agent):
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("<h1 style='text-align: center;'>🩺 Clinical Oversight Assistant</h1>")
chatbot = gr.Chatbot(label="Analysis", height=600, type="messages")
file_upload = gr.File(file_types=[".pdf", ".csv", ".xls", ".xlsx"], file_count="multiple")
msg_input = gr.Textbox(placeholder="Ask about potential oversights...", show_label=False)
send_btn = gr.Button("Analyze", variant="primary")
download_output = gr.File(label="Download Full Report")
def analyze(message: str, history: List[dict], files: List):
history.append({"role": "user", "content": message})
history.append({"role": "assistant", "content": "⏳ Extracting text from files..."})
yield history, None
extracted = ""
file_hash_value = ""
if files:
# Progress callback for extraction
total_pages = 0
processed_pages = 0
def update_extraction_progress(current, total):
nonlocal processed_pages, total_pages
processed_pages = current
total_pages = total
animation = ["πŸŒ€", "πŸ”„", "βš™οΈ", "πŸ”ƒ"][(int(time.time() * 2) % 4)]
history[-1] = {"role": "assistant", "content": f"Extracting text... {animation} Page {processed_pages}/{total_pages}"}
return history, None
with ThreadPoolExecutor(max_workers=6) as executor:
futures = [executor.submit(convert_file_to_json, f.name, f.name.split(".")[-1].lower(), update_extraction_progress) for f in files]
results = [sanitize_utf8(f.result()) for f in as_completed(futures)]
extracted = "\n".join(results)
file_hash_value = file_hash(files[0].name) if files else ""
history.pop() # Remove extraction message
history.append({"role": "assistant", "content": "βœ… Text extraction complete."})
yield history, None
# Split extracted text into chunks of ~6,000 characters
chunk_size = 6000
chunks = [extracted[i:i + chunk_size] for i in range(0, len(extracted), chunk_size)]
combined_response = ""
prompt_template = """
You are a medical analysis assistant. Analyze the following patient record excerpt for clinical oversights. Provide a concise, evidence-based summary in markdown format under these headings: Missed Diagnoses, Medication Conflicts, Incomplete Assessments, and Urgent Follow-up. For each finding, include:
- Clinical context (why the issue was missed or relevant details from the record).
- Potential risks if unaddressed (e.g., disease progression, adverse events).
- Actionable recommendations (e.g., tests, referrals, medication adjustments).
If no issues are found in a section, state "No issues identified." Ensure the output is specific to the provided text, formatted as markdown with bullet points under each heading, and avoids generic or static responses.
Patient Record Excerpt (Chunk {0} of {1}):
{chunk}
### Missed Diagnoses
- ...
### Medication Conflicts
- ...
### Incomplete Assessments
- ...
### Urgent Follow-up
- ...
"""
try:
# Process each chunk and stream results in real-time
for chunk_idx, chunk in enumerate(chunks, 1):
# Update UI with chunk progress
animation = ["πŸ”", "πŸ“Š", "🧠", "πŸ”Ž"][(int(time.time() * 2) % 4)]
history.append({"role": "assistant", "content": f"Analyzing records... {animation} Chunk {chunk_idx}/{len(chunks)}"})
yield history, None
prompt = prompt_template.format(chunk_idx, len(chunks), chunk=chunk[:4000]) # Truncate to avoid token limits
chunk_response = ""
for chunk_output in agent.run_gradio_chat(
message=prompt,
history=[],
temperature=0.2,
max_new_tokens=1024,
max_token=4096,
call_agent=False,
conversation=[],
):
if chunk_output is None:
continue
if isinstance(chunk_output, list):
for m in chunk_output:
if hasattr(m, 'content') and m.content:
cleaned = clean_response(m.content)
if cleaned:
chunk_response += cleaned + "\n"
# Update UI with partial response
if history[-1]["content"].startswith("Analyzing"):
history[-1] = {"role": "assistant", "content": f"--- Analysis for Chunk {chunk_idx} ---\n{chunk_response.strip()}"}
else:
history[-1]["content"] = f"--- Analysis for Chunk {chunk_idx} ---\n{chunk_response.strip()}"
yield history, None
elif isinstance(chunk_output, str) and chunk_output.strip():
cleaned = clean_response(chunk_output)
if cleaned:
chunk_response += cleaned + "\n"
# Update UI with partial response
if history[-1]["content"].startswith("Analyzing"):
history[-1] = {"role": "assistant", "content": f"--- Analysis for Chunk {chunk_idx} ---\n{chunk_response.strip()}"}
else:
history[-1]["content"] = f"--- Analysis for Chunk {chunk_idx} ---\n{chunk_response.strip()}"
yield history, None
# Append completed chunk response to combined response
combined_response += f"--- Analysis for Chunk {chunk_idx} ---\n{chunk_response}\n"
# Finalize UI with complete response
if combined_response:
history[-1]["content"] = combined_response.strip()
else:
history.append({"role": "assistant", "content": "No oversights identified."})
# Generate report file
report_path = os.path.join(report_dir, f"{file_hash_value}_report.txt") if file_hash_value else None
if report_path:
with open(report_path, "w", encoding="utf-8") as f:
f.write(combined_response)
yield history, report_path if report_path and os.path.exists(report_path) else None
except Exception as e:
print("🚨 ERROR:", e)
history.append({"role": "assistant", "content": f"❌ Error occurred: {str(e)}"})
yield history, None
send_btn.click(analyze, inputs=[msg_input, gr.State([]), file_upload], outputs=[chatbot, download_output])
msg_input.submit(analyze, inputs=[msg_input, gr.State([]), file_upload], outputs=[chatbot, download_output])
return demo
if __name__ == "__main__":
print("πŸš€ Launching app...")
agent = init_agent()
demo = create_ui(agent)
demo.queue(api_open=False).launch(
server_name="0.0.0.0",
server_port=7860,
show_error=True,
allowed_paths=[report_dir],
share=False
)