CPS-Test-Mobile / app.py
Ali2206's picture
Update app.py
cbc2a44 verified
raw
history blame
9.53 kB
#import sys
import os
import pandas as pd
import pdfplumber
import json
import gradio as gr
from typing import List
from concurrent.futures import ThreadPoolExecutor, as_completed
import hashlib
import shutil
import time
from threading import Thread
import re
import tempfile
# Setup paths
current_dir = os.path.dirname(os.path.abspath(__file__))
src_path = os.path.abspath(os.path.join(current_dir, "src"))
sys.path.insert(0, src_path)
base_dir = "/data"
model_cache_dir = os.path.join(base_dir, "txagent_models")
tool_cache_dir = os.path.join(base_dir, "tool_cache")
file_cache_dir = os.path.join(base_dir, "cache")
report_dir = os.path.join(base_dir, "reports")
vllm_cache_dir = os.path.join(base_dir, "vllm_cache")
for d in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir, vllm_cache_dir]:
os.makedirs(d, exist_ok=True)
os.environ.update({
"TRANSFORMERS_CACHE": model_cache_dir,
"HF_HOME": model_cache_dir,
"VLLM_CACHE_DIR": vllm_cache_dir,
"TOKENIZERS_PARALLELISM": "false",
"CUDA_LAUNCH_BLOCKING": "1"
})
from txagent.txagent import TxAgent
MEDICAL_KEYWORDS = {
'diagnosis', 'assessment', 'plan', 'results', 'medications',
'allergies', 'summary', 'impression', 'findings', 'recommendations'
}
def sanitize_utf8(text: str) -> str:
return text.encode("utf-8", "ignore").decode("utf-8")
def file_hash(path: str) -> str:
with open(path, "rb") as f:
return hashlib.md5(f.read()).hexdigest()
def extract_priority_pages(file_path: str, max_pages: int = 20) -> str:
try:
text_chunks = []
with pdfplumber.open(file_path) as pdf:
for i, page in enumerate(pdf.pages[:3]):
text_chunks.append(f"=== Page {i+1} ===\n{(page.extract_text() or '').strip()}")
for i, page in enumerate(pdf.pages[3:max_pages], start=4):
page_text = page.extract_text() or ""
if any(re.search(rf'\b{kw}\b', page_text.lower()) for kw in MEDICAL_KEYWORDS):
text_chunks.append(f"=== Page {i} ===\n{page_text.strip()}")
return "\n\n".join(text_chunks)
except Exception as e:
return f"PDF processing error: {str(e)}"
def convert_file_to_json(file_path: str, file_type: str) -> str:
try:
h = file_hash(file_path)
cache_path = os.path.join(file_cache_dir, f"{h}.json")
if os.path.exists(cache_path):
return open(cache_path, "r", encoding="utf-8").read()
if file_type == "pdf":
text = extract_priority_pages(file_path)
result = json.dumps({"filename": os.path.basename(file_path), "content": text, "status": "initial"})
Thread(target=full_pdf_processing, args=(file_path, h)).start()
elif file_type == "csv":
df = pd.read_csv(file_path, encoding_errors="replace", header=None, dtype=str, skip_blank_lines=False, on_bad_lines="skip")
content = df.fillna("").astype(str).values.tolist()
result = json.dumps({"filename": os.path.basename(file_path), "rows": content})
elif file_type in ["xls", "xlsx"]:
try:
df = pd.read_excel(file_path, engine="openpyxl", header=None, dtype=str)
except:
df = pd.read_excel(file_path, engine="xlrd", header=None, dtype=str)
content = df.fillna("").astype(str).values.tolist()
result = json.dumps({"filename": os.path.basename(file_path), "rows": content})
else:
return json.dumps({"error": f"Unsupported file type: {file_type}"})
with open(cache_path, "w", encoding="utf-8") as f:
f.write(result)
return result
except Exception as e:
return json.dumps({"error": f"Error processing {os.path.basename(file_path)}: {str(e)}"})
def full_pdf_processing(file_path: str, file_hash: str):
try:
cache_path = os.path.join(file_cache_dir, f"{file_hash}_full.json")
if os.path.exists(cache_path):
return
with pdfplumber.open(file_path) as pdf:
full_text = "\n".join([f"=== Page {i+1} ===\n{(page.extract_text() or '').strip()}" for i, page in enumerate(pdf.pages)])
result = json.dumps({"filename": os.path.basename(file_path), "content": full_text, "status": "complete"})
with open(cache_path, "w", encoding="utf-8") as f:
f.write(result)
with open(os.path.join(report_dir, f"{file_hash}_report.txt"), "w", encoding="utf-8") as out:
out.write(full_text)
except Exception as e:
print(f"Background processing failed: {str(e)}")
def init_agent():
default_tool_path = os.path.abspath("data/new_tool.json")
target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
if not os.path.exists(target_tool_path):
shutil.copy(default_tool_path, target_tool_path)
agent = TxAgent(
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
tool_files_dict={"new_tool": target_tool_path},
force_finish=True,
enable_checker=True,
step_rag_num=8,
seed=100,
additional_default_tools=[],
)
agent.init_model()
return agent
def create_ui(agent: TxAgent):
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("""
<h1 style='text-align: center;'>🩺 Clinical Oversight Assistant</h1>
<h3 style='text-align: center;'>Identify potential oversights in patient care</h3>
""")
chatbot = gr.Chatbot(label="Analysis", height=600, type="messages")
file_upload = gr.File(label="Upload Medical Records", file_types=[".pdf", ".csv", ".xls", ".xlsx"], file_count="multiple")
msg_input = gr.Textbox(placeholder="Ask about potential oversights...", show_label=False)
send_btn = gr.Button("Analyze", variant="primary")
conversation_state = gr.State([])
download_output = gr.File(label="Download Full Report")
def analyze_potential_oversights(message: str, history: list, conversation: list, files: list):
try:
extracted_data = ""
file_hash_value = ""
if files and isinstance(files, list):
with ThreadPoolExecutor(max_workers=4) as executor:
futures = [executor.submit(convert_file_to_json, f.name, f.name.split(".")[-1].lower()) for f in files if hasattr(f, 'name')]
extracted_data = "\n".join([sanitize_utf8(f.result()) for f in as_completed(futures)])
file_hash_value = file_hash(files[0].name) if files else ""
prompt = f"""Review these medical records and identify EXACTLY what might have been missed:
1. List potential missed diagnoses
2. Flag any medication conflicts
3. Note incomplete assessments
4. Highlight abnormal results needing follow-up
Medical Records:\n{extracted_data[:15000]}
### Potential Oversights:\n"""
final_output = ""
for chunk in agent.run_gradio_chat(
message=prompt,
history=[],
temperature=0.2,
max_new_tokens=1024,
max_token=4096,
call_agent=False,
conversation=conversation
):
if isinstance(chunk, str):
final_output += chunk
elif isinstance(chunk, list):
final_output += "".join([c.content for c in chunk if hasattr(c, 'content')])
cleaned = final_output.replace("[TOOL_CALLS]", "").strip()
if not cleaned:
cleaned = "No clear oversights identified. Recommend comprehensive review."
updated_history = history + [
{"role": "user", "content": message},
{"role": "assistant", "content": cleaned}
]
report_path = None
if file_hash_value:
possible_report = os.path.join(report_dir, f"{file_hash_value}_report.txt")
if os.path.exists(possible_report):
report_path = possible_report
yield updated_history, report_path
except Exception as e:
updated_history = history + [{"role": "user", "content": message},
{"role": "assistant", "content": f"❌ Analysis failed: {str(e)}"}]
yield updated_history, None
inputs = [msg_input, chatbot, conversation_state, file_upload]
outputs = [chatbot, download_output]
send_btn.click(analyze_potential_oversights, inputs=inputs, outputs=outputs)
msg_input.submit(analyze_potential_oversights, inputs=inputs, outputs=outputs)
gr.Examples([
["What might have been missed in this patient's treatment?"],
["Are there any medication conflicts in these records?"],
["What abnormal results require follow-up?"]
], inputs=msg_input)
return demo
if __name__ == "__main__":
print("Initializing medical analysis agent...")
agent = init_agent()
print("Launching interface...")
demo = create_ui(agent)
demo.queue(api_open=False).launch(
server_name="0.0.0.0",
server_port=7860,
show_error=True,
allowed_paths=["/data/reports"],
share=False
)