|
import sys |
|
import os |
|
import pandas as pd |
|
import pdfplumber |
|
import json |
|
import gradio as gr |
|
from typing import List |
|
from concurrent.futures import ThreadPoolExecutor, as_completed |
|
import hashlib |
|
import shutil |
|
import re |
|
import psutil |
|
import subprocess |
|
import threading |
|
import torch |
|
from diskcache import Cache |
|
import time |
|
|
|
|
|
persistent_dir = "/data/hf_cache" |
|
os.makedirs(persistent_dir, exist_ok=True) |
|
|
|
model_cache_dir = os.path.join(persistent_dir, "txagent_models") |
|
tool_cache_dir = os.path.join(persistent_dir, "tool_cache") |
|
file_cache_dir = os.path.join(persistent_dir, "cache") |
|
report_dir = os.path.join(persistent_dir, "reports") |
|
vllm_cache_dir = os.path.join(persistent_dir, "vllm_cache") |
|
|
|
for directory in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir, vllm_cache_dir]: |
|
os.makedirs(directory, exist_ok=True) |
|
|
|
os.environ["HF_HOME"] = model_cache_dir |
|
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir |
|
os.environ["VLLM_CACHE_DIR"] = vllm_cache_dir |
|
os.environ["TOKENIZERS_PARALLELISM"] = "false" |
|
os.environ["CUDA_LAUNCH_BLOCKING"] = "1" |
|
os.environ["OMP_NUM_THREADS"] = str(os.cpu_count() // 2) |
|
|
|
current_dir = os.path.dirname(os.path.abspath(__file__)) |
|
src_path = os.path.abspath(os.path.join(current_dir, "src")) |
|
sys.path.insert(0, src_path) |
|
|
|
from txagent.txagent import TxAgent |
|
|
|
|
|
cache = Cache(file_cache_dir, size_limit=10 * 1024**3) |
|
|
|
def sanitize_utf8(text: str) -> str: |
|
return text.encode("utf-8", "ignore").decode("utf-8") |
|
|
|
def file_hash(path: str) -> str: |
|
with open(path, "rb") as f: |
|
return hashlib.md5(f.read()).hexdigest() |
|
|
|
def extract_all_pages(file_path: str, progress_callback=None) -> str: |
|
try: |
|
with pdfplumber.open(file_path) as pdf: |
|
total_pages = len(pdf.pages) |
|
if total_pages == 0: |
|
return "" |
|
|
|
batch_size = 10 |
|
batches = [(i, min(i + batch_size, total_pages)) for i in range(0, total_pages, batch_size)] |
|
text_chunks = [""] * total_pages |
|
processed_pages = 0 |
|
|
|
def extract_batch(start: int, end: int) -> List[tuple]: |
|
results = [] |
|
with pdfplumber.open(file_path) as pdf: |
|
for page in pdf.pages[start:end]: |
|
page_num = start + pdf.pages.index(page) |
|
page_text = page.extract_text() or "" |
|
results.append((page_num, f"=== Page {page_num + 1} ===\n{page_text.strip()}")) |
|
return results |
|
|
|
with ThreadPoolExecutor(max_workers=min(6, os.cpu_count())) as executor: |
|
futures = [executor.submit(extract_batch, start, end) for start, end in batches] |
|
for future in as_completed(futures): |
|
for page_num, text in future.result(): |
|
text_chunks[page_num] = text |
|
processed_pages += batch_size |
|
if progress_callback: |
|
progress_callback(min(processed_pages, total_pages), total_pages) |
|
|
|
return "\n\n".join(filter(None, text_chunks)) |
|
except Exception as e: |
|
return f"PDF processing error: {str(e)}" |
|
|
|
def convert_file_to_json(file_path: str, file_type: str, progress_callback=None) -> str: |
|
try: |
|
file_h = file_hash(file_path) |
|
cache_key = f"{file_h}_{file_type}" |
|
if cache_key in cache: |
|
return cache[cache_key] |
|
|
|
if file_type == "pdf": |
|
text = extract_all_pages(file_path, progress_callback) |
|
result = json.dumps({"filename": os.path.basename(file_path), "content": text, "status": "initial"}) |
|
elif file_type == "csv": |
|
df = pd.read_csv(file_path, encoding_errors="replace", header=None, dtype=str, |
|
skip_blank_lines=False, on_bad_lines="skip") |
|
content = df.fillna("").astype(str).values.tolist() |
|
result = json.dumps({"filename": os.path.basename(file_path), "rows": content}) |
|
elif file_type in ["xls", "xlsx"]: |
|
df = pd.read_excel(file_path, engine="openpyxl", header=None, dtype=str) |
|
content = df.fillna("").astype(str).values.tolist() |
|
result = json.dumps({"filename": os.path.basename(file_path), "rows": content}) |
|
else: |
|
result = json.dumps({"error": f"Unsupported file type: {file_type}"}) |
|
|
|
cache[cache_key] = result |
|
return result |
|
except Exception as e: |
|
return json.dumps({"error": f"Error processing {os.path.basename(file_path)}: {str(e)}"}) |
|
|
|
def log_system_usage(tag=""): |
|
try: |
|
cpu = psutil.cpu_percent(interval=1) |
|
mem = psutil.virtual_memory() |
|
print(f"[{tag}] CPU: {cpu}% | RAM: {mem.used // (1024**2)}MB / {mem.total // (1024**2)}MB") |
|
result = subprocess.run( |
|
["nvidia-smi", "--query-gpu=memory.used,memory.total,utilization.gpu", "--format=csv,nounits,noheader"], |
|
capture_output=True, text=True |
|
) |
|
if result.returncode == 0: |
|
used, total, util = result.stdout.strip().split(", ") |
|
print(f"[{tag}] GPU: {used}MB / {total}MB | Utilization: {util}%") |
|
except Exception as e: |
|
print(f"[{tag}] GPU/CPU monitor failed: {e}") |
|
|
|
def clean_response(text: str) -> str: |
|
text = sanitize_utf8(text) |
|
text = re.sub(r"\[.*?\]|\bNone\b|To analyze the patient record excerpt.*?medications\.|Since the previous attempts.*?\.|I need to.*?medications\.|Retrieving tools.*?\.", "", text, flags=re.DOTALL) |
|
text = re.sub(r"\n{3,}", "\n\n", text) |
|
text = re.sub(r"[^\n#\-\*\w\s\.\,\:\(\)]+", "", text) |
|
|
|
tool_to_heading = { |
|
"get_abuse_info_by_drug_name": "Drugs", |
|
"get_dependence_info_by_drug_name": "Drugs", |
|
"get_abuse_types_and_related_adverse_reactions_and_controlled_substance_status_by_drug_name": "Drugs", |
|
"get_info_for_patients_by_drug_name": "Drugs", |
|
} |
|
|
|
sections = {} |
|
current_section = None |
|
current_tool = None |
|
lines = text.splitlines() |
|
for line in lines: |
|
line = line.strip() |
|
if not line: |
|
continue |
|
tool_match = re.match(r"\[TOOL:\s*(\w+)\]", line) |
|
if tool_match: |
|
current_tool = tool_match.group(1) |
|
continue |
|
section_match = re.match(r"###\s*(Missed Diagnoses|Medication Conflicts|Incomplete Assessments|Urgent Follow-up)", line) |
|
if section_match: |
|
current_section = section_match.group(1) |
|
if current_section not in sections: |
|
sections[current_section] = [] |
|
continue |
|
finding_match = re.match(r"-\s*.+", line) |
|
if finding_match and current_section and not re.match(r"-\s*No issues identified", line): |
|
if current_tool and current_tool in tool_to_heading: |
|
heading = tool_to_heading[current_tool] |
|
if heading not in sections: |
|
sections[heading] = [] |
|
sections[heading].append(line) |
|
else: |
|
sections[current_section].append(line) |
|
|
|
cleaned = [] |
|
for heading, findings in sections.items(): |
|
if findings: |
|
cleaned.append(f"### {heading}\n" + "\n".join(findings)) |
|
|
|
text = "\n\n".join(cleaned).strip() |
|
return text if text else "" |
|
|
|
def init_agent(): |
|
print("🔁 Initializing model...") |
|
log_system_usage("Before Load") |
|
default_tool_path = os.path.abspath("data/new_tool.json") |
|
target_tool_path = os.path.join(tool_cache_dir, "new_tool.json") |
|
if not os.path.exists(target_tool_path): |
|
shutil.copy(default_tool_path, target_tool_path) |
|
|
|
agent = TxAgent( |
|
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B", |
|
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B", |
|
tool_files_dict={"new_tool": target_tool_path}, |
|
force_finish=True, |
|
enable_checker=False, |
|
step_rag_num=4, |
|
seed=100, |
|
additional_default_tools=[], |
|
dtype=torch.float16, |
|
) |
|
|
|
def preload_models(): |
|
agent.init_model() |
|
log_system_usage("After Load") |
|
|
|
preload_thread = threading.Thread(target=preload_models) |
|
preload_thread.start() |
|
preload_thread.join() |
|
print("✅ Agent Ready") |
|
return agent |
|
|
|
def create_ui(agent): |
|
with gr.Blocks(theme=gr.themes.Soft()) as demo: |
|
gr.Markdown("<h1 style='text-align: center;'>🩺 Clinical Oversight Assistant</h1>") |
|
chatbot = gr.Chatbot(label="Analysis", height=600, type="messages") |
|
file_upload = gr.File(file_types=[".pdf", ".csv", ".xls", ".xlsx"], file_count="multiple") |
|
msg_input = gr.Textbox(placeholder="Ask about potential oversights...", show_label=False) |
|
send_btn = gr.Button("Analyze", variant="primary") |
|
download_output = gr.File(label="Download Full Report") |
|
progress_bar = gr.Progress() |
|
|
|
prompt_template = """ |
|
Analyze the patient record excerpt for clinical oversights. Provide a concise, evidence-based summary in markdown with findings grouped under tool-derived headings (e.g., 'Drugs'). For each finding, include clinical context, risks, and recommendations. Precede findings with a tool tag (e.g., [TOOL: get_abuse_info_by_drug_name]). Output only markdown bullet points under headings. If no issues, state "No issues identified". |
|
|
|
Patient Record Excerpt (Chunk {0} of {1}): |
|
{chunk} |
|
""" |
|
|
|
def analyze(message: str, history: List[dict], files: List, progress=gr.Progress()): |
|
history.append({"role": "user mesage": "user", "content": message}) |
|
yield history, None, None |
|
|
|
extracted = "" |
|
file_hash_value = "" |
|
if files: |
|
def update_extraction_progress(current, total): |
|
progress(current / total, desc=f"Extracting text... Page {current}/{total}") |
|
return history, None, None |
|
|
|
with ThreadPoolExecutor(max_workers=6) as executor: |
|
futures = [executor.submit(convert_file_to_json, f.name, f.name.split(".")[-1].lower(), update_extraction_progress) for f in files] |
|
results = [sanitize_utf8(f.result()) for f in as_completed(futures)] |
|
extracted = "\n".join(results) |
|
file_hash_value = file_hash(files[0].name) if files else "" |
|
|
|
history.append({"role": "assistant", "content": "✅ Text extraction complete."}) |
|
yield history, None, None |
|
|
|
chunk_size = 6000 |
|
chunks = [extracted[i:i + chunk_size] for i in range(0, len(extracted), chunk_size)] |
|
combined_response = "" |
|
batch_size = 2 |
|
|
|
try: |
|
for batch_idx in range(0, len(chunks), batch_size): |
|
batch_chunks = chunks[batch_idx:batch_idx + batch_size] |
|
batch_prompts = [prompt_template.format(i + 1, len(chunks), chunk=chunk[:4000]) for i, chunk in enumerate(batch_chunks)] |
|
batch_responses = [] |
|
|
|
progress((batch_idx + 1) / len(chunks), desc=f"Analyzing chunks {batch_idx + 1}-{min(batch_idx + batch_size, len(chunks))}/{len(chunks)}") |
|
|
|
with ThreadPoolExecutor(max_workers=len(batch_chunks)) as executor: |
|
futures = [executor.submit(agent.run_gradio_chat, prompt, [], 0.2, 512, 2048, False, []) for prompt in batch_prompts] |
|
for future in as_completed(futures): |
|
chunk_response = "" |
|
for chunk_output in future.result(): |
|
if chunk_output is None: |
|
continue |
|
if isinstance(chunk_output, list): |
|
for m in chunk_output: |
|
if hasattr(m, 'content') and m.content: |
|
cleaned = clean_response(m.content) |
|
if cleaned and re.search(r"###\s*\w+", cleaned): |
|
chunk_response += cleaned + "\n\n" |
|
elif isinstance(chunk_output, str) and chunk_output.strip(): |
|
cleaned = clean_response(chunk_output) |
|
if cleaned and re.search(r"###\s*\w+", cleaned): |
|
chunk_response += cleaned + "\n\n" |
|
batch_responses.append(chunk_response) |
|
|
|
for chunk_idx, chunk_response in enumerate(batch_responses, batch_idx + 1): |
|
if chunk_response: |
|
combined_response += f"--- Analysis for Chunk {chunk_idx} ---\n{chunk_response}\n" |
|
else: |
|
combined_response += f"--- Analysis for Chunk {chunk_idx} ---\nNo oversights identified for this chunk.\n\n" |
|
history[-1] = {"role": "assistant", "content": combined_response.strip()} |
|
yield history, None, None |
|
|
|
if combined_response.strip() and not all("No oversights identified" in chunk for chunk in combined_response.split("--- Analysis for Chunk")): |
|
history[-1]["content"] = combined_response.strip() |
|
else: |
|
history.append({"role": "assistant", "content": "No oversights identified in the provided records."}) |
|
|
|
report_path = os.path.join(report_dir, f"{file_hash_value}_report.txt") if file_hash_value else None |
|
if report_path: |
|
with open(report_path, "w", encoding="utf-8") as f: |
|
f.write(combined_response) |
|
yield history, report_path if report_path and os.path.exists(report_path) else None, None |
|
|
|
except Exception as e: |
|
print("🚨 ERROR:", e) |
|
history.append({"role": "assistant", "content": f"❌ Error occurred: {str(e)}"}) |
|
yield history, None, None |
|
|
|
send_btn.click(analyze, inputs=[msg_input, gr.State([]), file_upload], outputs=[chatbot, download_output, progress_bar]) |
|
msg_input.submit(analyze, inputs=[msg_input, gr.State([]), file_upload], outputs=[chatbot, download_output, progress_bar]) |
|
return demo |
|
|
|
if __name__ == "__main__": |
|
print("🚀 Launching app...") |
|
agent = init_agent() |
|
demo = create_ui(agent) |
|
demo.queue(api_open=False).launch( |
|
server_name="0.0.0.0", |
|
server_port=7860, |
|
show_error=True, |
|
allowed_paths=[report_dir], |
|
share=False |
|
) |