CPS-Test-Mobile / app.py
Ali2206's picture
Update app.py
ad85a12 verified
raw
history blame
6.32 kB
import sys
import os
import pandas as pd
import json
import gradio as gr
from typing import List, Tuple, Dict, Any
import hashlib
import shutil
import re
from datetime import datetime
import time
# Configuration and setup
persistent_dir = "/data/hf_cache"
os.makedirs(persistent_dir, exist_ok=True)
model_cache_dir = os.path.join(persistent_dir, "txagent_models")
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
file_cache_dir = os.path.join(persistent_dir, "cache")
report_dir = os.path.join(persistent_dir, "reports")
for directory in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir]:
os.makedirs(directory, exist_ok=True)
os.environ["HF_HOME"] = model_cache_dir
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir
current_dir = os.path.dirname(os.path.abspath(__file__))
src_path = os.path.abspath(os.path.join(current_dir, "src"))
sys.path.insert(0, src_path)
from txagent.txagent import TxAgent
# Constants
MAX_TOKENS = 32768
MAX_NEW_TOKENS = 2048
def clean_response(text: str) -> str:
try:
text = text.encode('utf-8', 'surrogatepass').decode('utf-8')
except UnicodeError:
text = text.encode('utf-8', 'replace').decode('utf-8')
text = re.sub(r"\[.*?\]|\bNone\b", "", text, flags=re.DOTALL)
text = re.sub(r"\n{3,}", "\n\n", text)
text = re.sub(r"[^\n#\-\*\w\s\.,:\(\)]+", "", text)
return text.strip()
def estimate_tokens(text: str) -> int:
return len(text) // 3.5
def extract_text_from_excel(file_path: str) -> str:
all_text = []
xls = pd.ExcelFile(file_path)
for sheet_name in xls.sheet_names:
df = xls.parse(sheet_name)
df = df.astype(str).fillna("")
rows = df.apply(lambda row: " | ".join(row), axis=1)
sheet_text = [f"[{sheet_name}] {line}" for line in rows]
all_text.extend(sheet_text)
return "\n".join(all_text)
def split_text_into_chunks(text: str, max_tokens: int = MAX_TOKENS) -> List[str]:
lines = text.split("\n")
chunks = []
current_chunk = []
current_tokens = 0
for line in lines:
tokens = estimate_tokens(line)
if current_tokens + tokens > max_tokens:
chunks.append("\n".join(current_chunk))
current_chunk = [line]
current_tokens = tokens
else:
current_chunk.append(line)
current_tokens += tokens
if current_chunk:
chunks.append("\n".join(current_chunk))
return chunks
def build_prompt_from_text(chunk: str) -> str:
return f"""
### Unstructured Clinical Records
You are reviewing unstructured, mixed-format clinical documentation from various forms, tables, and sheets.
**Objective:** Identify patterns, missed diagnoses, inconsistencies, and follow-up gaps.
Here is the extracted content chunk:
{chunk}
Please analyze the above and provide:
- Diagnostic Patterns
- Medication Issues
- Missed Opportunities
- Inconsistencies
- Follow-up Recommendations
"""
def init_agent():
default_tool_path = os.path.abspath("data/new_tool.json")
target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
if not os.path.exists(target_tool_path):
shutil.copy(default_tool_path, target_tool_path)
agent = TxAgent(
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
tool_files_dict={"new_tool": target_tool_path},
force_finish=True,
enable_checker=True,
step_rag_num=4,
seed=100,
additional_default_tools=[]
)
agent.init_model()
return agent
def analyze_with_agent(agent, prompt: str) -> str:
try:
response = ""
for result in agent.run_gradio_chat(
message=prompt,
history=[],
temperature=0.2,
max_new_tokens=MAX_NEW_TOKENS,
max_token=MAX_TOKENS,
call_agent=False,
conversation=[],
):
if isinstance(result, list):
for r in result:
if hasattr(r, 'content') and r.content:
response += clean_response(r.content) + "\n"
elif isinstance(result, str):
response += clean_response(result) + "\n"
elif hasattr(result, 'content'):
response += clean_response(result.content) + "\n"
return response.strip()
except Exception as e:
return f"Error in analysis: {str(e)}"
def analyze(file):
if not file:
raise gr.Error("Please upload a file")
try:
extracted_text = extract_text_from_excel(file.name)
chunks = split_text_into_chunks(extracted_text)
chunk_responses = []
for chunk in chunks:
prompt = build_prompt_from_text(chunk)
chunk_responses.append(analyze_with_agent(agent, prompt))
final_prompt = "\n\n".join(chunk_responses) + "\n\nSummarize the key findings above."
final_response = analyze_with_agent(agent, final_prompt)
full_report = f"# \U0001f9e0 Final Patient Report\n\n{final_response}"
report_path = os.path.join(report_dir, f"report_{datetime.now().strftime('%Y%m%d_%H%M%S')}.md")
with open(report_path, 'w') as f:
f.write(full_report)
return [("user", f"[Excel Uploaded: {file.name}]"), ("assistant", full_report)], report_path
except Exception as e:
raise gr.Error(f"Error: {str(e)}")
def create_ui(agent):
with gr.Blocks(title="Patient History Chat") as demo:
chatbot = gr.Chatbot(label="Clinical Assistant", show_copy_button=True)
file_upload = gr.File(label="Upload Excel File", file_types=[".xlsx"])
analyze_btn = gr.Button("🧠 Analyze Patient History")
report_output = gr.File(label="Download Report")
analyze_btn.click(
analyze,
inputs=[file_upload],
outputs=[chatbot, report_output]
)
return demo
if __name__ == "__main__":
try:
agent = init_agent()
demo = create_ui(agent)
demo.launch(
server_name="0.0.0.0",
server_port=7860,
show_error=True,
allowed_paths=["/data/hf_cache/reports"]
)
except Exception as e:
print(f"Error: {str(e)}")
sys.exit(1)