CPS-Test-Mobile / app.py
Ali2206's picture
Update app.py
98f2d10 verified
raw
history blame
9.29 kB
import sys
import os
import pandas as pd
import json
import gradio as gr
from typing import List, Tuple, Dict, Any, Generator, Union
import hashlib
import shutil
import re
from datetime import datetime
import time
# Configuration and setup
persistent_dir = "/data/hf_cache"
os.makedirs(persistent_dir, exist_ok=True)
model_cache_dir = os.path.join(persistent_dir, "txagent_models")
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
file_cache_dir = os.path.join(persistent_dir, "cache")
report_dir = os.path.join(persistent_dir, "reports")
for directory in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir]:
os.makedirs(directory, exist_ok=True)
os.environ["HF_HOME"] = model_cache_dir
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir
current_dir = os.path.dirname(os.path.abspath(__file__))
src_path = os.path.abspath(os.path.join(current_dir, "src"))
sys.path.insert(0, src_path)
from txagent.txagent import TxAgent
# Constants
MAX_TOKENS = 32768
MAX_NEW_TOKENS = 2048
def clean_response(text: str) -> str:
try:
text = text.encode('utf-8', 'surrogatepass').decode('utf-8')
except UnicodeError:
text = text.encode('utf-8', 'replace').decode('utf-8')
text = re.sub(r"\[.*?\]|\bNone\b", "", text, flags=re.DOTALL)
text = re.sub(r"\n{3,}", "\n\n", text)
text = re.sub(r"[^\n#\-\*\w\s\.,:\(\)]+", "", text)
return text.strip()
def estimate_tokens(text: str) -> int:
return len(text) // 3.5
def extract_text_from_excel(file_path: str) -> str:
all_text = []
xls = pd.ExcelFile(file_path)
for sheet_name in xls.sheet_names:
df = xls.parse(sheet_name)
df = df.astype(str).fillna("")
rows = df.apply(lambda row: " | ".join(row), axis=1)
sheet_text = [f"[{sheet_name}] {line}" for line in rows]
all_text.extend(sheet_text)
return "\n".join(all_text)
def split_text_into_chunks(text: str, max_tokens: int = MAX_TOKENS) -> List[str]:
lines = text.split("\n")
chunks = []
current_chunk = []
current_tokens = 0
for line in lines:
tokens = estimate_tokens(line)
if current_tokens + tokens > max_tokens:
chunks.append("\n".join(current_chunk))
current_chunk = [line]
current_tokens = tokens
else:
current_chunk.append(line)
current_tokens += tokens
if current_chunk:
chunks.append("\n".join(current_chunk))
return chunks
def build_prompt_from_text(chunk: str) -> str:
return f"""
### Unstructured Clinical Records
You are reviewing unstructured, mixed-format clinical documentation from various forms, tables, and sheets.
**Objective:** Identify patterns, missed diagnoses, inconsistencies, and follow-up gaps.
Here is the extracted content chunk:
{chunk}
Please analyze the above and provide:
- Diagnostic Patterns
- Medication Issues
- Missed Opportunities
- Inconsistencies
- Follow-up Recommendations
"""
def init_agent():
default_tool_path = os.path.abspath("data/new_tool.json")
target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
if not os.path.exists(target_tool_path):
shutil.copy(default_tool_path, target_tool_path)
agent = TxAgent(
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
tool_files_dict={"new_tool": target_tool_path},
force_finish=True,
enable_checker=True,
step_rag_num=4,
seed=100,
additional_default_tools=[]
)
agent.init_model()
return agent
def stream_final_report(agent, file) -> Generator[Tuple[List[Dict[str, str]], Union[str, None]], None, None]:
# Initialize with empty values
messages = []
report_path = None
if file is None or not hasattr(file, "name"):
messages = [{"role": "assistant", "content": "❌ Please upload a valid Excel file before analyzing."}]
yield messages, None
return
try:
# Initial processing message
messages = [{"role": "user", "content": f"Processing Excel file: {os.path.basename(file.name)}"},
{"role": "assistant", "content": "⏳ Extracting and analyzing data..."}]
yield messages, None
extracted_text = extract_text_from_excel(file.name)
chunks = split_text_into_chunks(extracted_text)
chunk_responses = []
# Process each chunk
for i, chunk in enumerate(chunks):
messages.append({"role": "assistant", "content": f"πŸ” Analyzing chunk {i+1}/{len(chunks)}..."})
yield messages, None
prompt = build_prompt_from_text(chunk)
response = ""
for result in agent.run_gradio_chat(
message=prompt,
history=[],
temperature=0.2,
max_new_tokens=MAX_NEW_TOKENS,
max_token=MAX_TOKENS,
call_agent=False,
conversation=[],
):
if isinstance(result, str):
response += result
elif hasattr(result, "content"):
response += result.content
elif isinstance(result, list):
for r in result:
if hasattr(r, "content"):
response += r.content
chunk_responses.append(clean_response(response))
messages.append({"role": "assistant", "content": f"βœ… Chunk {i+1} analysis complete"})
yield messages, None
# Final summarization
final_prompt = "\n\n".join(chunk_responses) + "\n\nSummarize the key findings above."
messages.append({"role": "assistant", "content": "πŸ“Š Generating final report..."})
yield messages, None
stream_text = ""
for result in agent.run_gradio_chat(
message=final_prompt,
history=[],
temperature=0.2,
max_new_tokens=MAX_NEW_TOKENS,
max_token=MAX_TOKENS,
call_agent=False,
conversation=[],
):
if isinstance(result, str):
stream_text += result
elif hasattr(result, "content"):
stream_text += result.content
elif isinstance(result, list):
for r in result:
if hasattr(r, "content"):
stream_text += r.content
messages[-1]["content"] = f"πŸ“Š Generating final report...\n\n{clean_response(stream_text)}"
yield messages, None
# Save final report
final_report = f"# \U0001f9e0 Final Patient Report\n\n{clean_response(stream_text)}"
timestamp = datetime.now().strftime('%Y%m%d_%H%M%S')
report_path = os.path.join(report_dir, f"report_{timestamp}.md")
with open(report_path, 'w') as f:
f.write(final_report)
messages.append({"role": "assistant", "content": f"βœ… Report generated and saved: report_{timestamp}.md"})
yield messages, report_path
except Exception as e:
messages.append({"role": "assistant", "content": f"❌ Error processing file: {str(e)}"})
yield messages, None
def create_ui(agent):
with gr.Blocks(title="Patient History Chat", css=".gradio-container {max-width: 900px !important}") as demo:
gr.Markdown("## πŸ₯ Patient History Analysis Tool")
with gr.Row():
with gr.Column(scale=3):
chatbot = gr.Chatbot(
label="Clinical Assistant",
show_copy_button=True,
height=600,
type="messages",
avatar_images=(
None, # User avatar
"https://i.imgur.com/6wX7Zb4.png" # Bot avatar
)
)
with gr.Column(scale=1):
file_upload = gr.File(
label="Upload Excel File",
file_types=[".xlsx"],
height=100
)
analyze_btn = gr.Button(
"🧠 Analyze Patient History",
variant="primary"
)
report_output = gr.File(
label="Download Report",
visible=False,
interactive=False
)
analyze_btn.click(
fn=lambda file: stream_final_report(agent, file),
inputs=[file_upload],
outputs=[chatbot, report_output],
api_name="analyze"
)
def show_report(report_path):
if report_path:
return gr.File(visible=True, value=report_path)
return gr.File(visible=False)
return demo
if __name__ == "__main__":
try:
agent = init_agent()
demo = create_ui(agent)
demo.launch(
server_name="0.0.0.0",
server_port=7860,
show_error=True,
allowed_paths=["/data/hf_cache/reports"],
share=False
)
except Exception as e:
print(f"Error: {str(e)}")
sys.exit(1)