|
import sys |
|
import os |
|
import pandas as pd |
|
import json |
|
import gradio as gr |
|
from typing import List, Tuple, Dict, Any, Generator, Union |
|
import hashlib |
|
import shutil |
|
import re |
|
from datetime import datetime |
|
import time |
|
|
|
|
|
persistent_dir = "/data/hf_cache" |
|
os.makedirs(persistent_dir, exist_ok=True) |
|
|
|
model_cache_dir = os.path.join(persistent_dir, "txagent_models") |
|
tool_cache_dir = os.path.join(persistent_dir, "tool_cache") |
|
file_cache_dir = os.path.join(persistent_dir, "cache") |
|
report_dir = os.path.join(persistent_dir, "reports") |
|
|
|
for directory in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir]: |
|
os.makedirs(directory, exist_ok=True) |
|
|
|
os.environ["HF_HOME"] = model_cache_dir |
|
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir |
|
|
|
current_dir = os.path.dirname(os.path.abspath(__file__)) |
|
src_path = os.path.abspath(os.path.join(current_dir, "src")) |
|
sys.path.insert(0, src_path) |
|
|
|
from txagent.txagent import TxAgent |
|
|
|
|
|
MAX_TOKENS = 32768 |
|
MAX_NEW_TOKENS = 2048 |
|
|
|
|
|
def clean_response(text: str) -> str: |
|
try: |
|
text = text.encode('utf-8', 'surrogatepass').decode('utf-8') |
|
except UnicodeError: |
|
text = text.encode('utf-8', 'replace').decode('utf-8') |
|
text = re.sub(r"\[.*?\]|\bNone\b", "", text, flags=re.DOTALL) |
|
text = re.sub(r"\n{3,}", "\n\n", text) |
|
text = re.sub(r"[^\n#\-\*\w\s\.,:\(\)]+", "", text) |
|
return text.strip() |
|
|
|
|
|
def estimate_tokens(text: str) -> int: |
|
return len(text) // 3.5 |
|
|
|
|
|
def extract_text_from_excel(file_path: str) -> str: |
|
all_text = [] |
|
xls = pd.ExcelFile(file_path) |
|
for sheet_name in xls.sheet_names: |
|
df = xls.parse(sheet_name) |
|
df = df.astype(str).fillna("") |
|
rows = df.apply(lambda row: " | ".join(row), axis=1) |
|
sheet_text = [f"[{sheet_name}] {line}" for line in rows] |
|
all_text.extend(sheet_text) |
|
return "\n".join(all_text) |
|
|
|
|
|
def split_text_into_chunks(text: str, max_tokens: int = MAX_TOKENS) -> List[str]: |
|
lines = text.split("\n") |
|
chunks = [] |
|
current_chunk = [] |
|
current_tokens = 0 |
|
|
|
for line in lines: |
|
tokens = estimate_tokens(line) |
|
if current_tokens + tokens > max_tokens: |
|
chunks.append("\n".join(current_chunk)) |
|
current_chunk = [line] |
|
current_tokens = tokens |
|
else: |
|
current_chunk.append(line) |
|
current_tokens += tokens |
|
|
|
if current_chunk: |
|
chunks.append("\n".join(current_chunk)) |
|
return chunks |
|
|
|
|
|
def build_prompt_from_text(chunk: str) -> str: |
|
return f""" |
|
### Unstructured Clinical Records |
|
|
|
You are reviewing unstructured, mixed-format clinical documentation from various forms, tables, and sheets. |
|
|
|
**Objective:** Identify patterns, missed diagnoses, inconsistencies, and follow-up gaps. |
|
|
|
Here is the extracted content chunk: |
|
|
|
{chunk} |
|
|
|
Please analyze the above and provide: |
|
- Diagnostic Patterns |
|
- Medication Issues |
|
- Missed Opportunities |
|
- Inconsistencies |
|
- Follow-up Recommendations |
|
""" |
|
|
|
|
|
def init_agent(): |
|
default_tool_path = os.path.abspath("data/new_tool.json") |
|
target_tool_path = os.path.join(tool_cache_dir, "new_tool.json") |
|
|
|
if not os.path.exists(target_tool_path): |
|
shutil.copy(default_tool_path, target_tool_path) |
|
|
|
agent = TxAgent( |
|
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B", |
|
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B", |
|
tool_files_dict={"new_tool": target_tool_path}, |
|
force_finish=True, |
|
enable_checker=True, |
|
step_rag_num=4, |
|
seed=100, |
|
additional_default_tools=[] |
|
) |
|
agent.init_model() |
|
return agent |
|
|
|
|
|
def stream_final_report(agent, file) -> Generator[Tuple[List[Dict[str, str]], Union[str, None]], None, None]: |
|
|
|
messages = [] |
|
report_path = None |
|
|
|
if file is None or not hasattr(file, "name"): |
|
messages = [{"role": "assistant", "content": "β Please upload a valid Excel file before analyzing."}] |
|
yield messages, None |
|
return |
|
|
|
try: |
|
|
|
messages = [{"role": "user", "content": f"Processing Excel file: {os.path.basename(file.name)}"}, |
|
{"role": "assistant", "content": "β³ Extracting and analyzing data..."}] |
|
yield messages, None |
|
|
|
extracted_text = extract_text_from_excel(file.name) |
|
chunks = split_text_into_chunks(extracted_text) |
|
chunk_responses = [] |
|
|
|
|
|
for i, chunk in enumerate(chunks): |
|
messages.append({"role": "assistant", "content": f"π Analyzing chunk {i+1}/{len(chunks)}..."}) |
|
yield messages, None |
|
|
|
prompt = build_prompt_from_text(chunk) |
|
response = "" |
|
for result in agent.run_gradio_chat( |
|
message=prompt, |
|
history=[], |
|
temperature=0.2, |
|
max_new_tokens=MAX_NEW_TOKENS, |
|
max_token=MAX_TOKENS, |
|
call_agent=False, |
|
conversation=[], |
|
): |
|
if isinstance(result, str): |
|
response += result |
|
elif hasattr(result, "content"): |
|
response += result.content |
|
elif isinstance(result, list): |
|
for r in result: |
|
if hasattr(r, "content"): |
|
response += r.content |
|
|
|
chunk_responses.append(clean_response(response)) |
|
messages.append({"role": "assistant", "content": f"β
Chunk {i+1} analysis complete"}) |
|
yield messages, None |
|
|
|
|
|
final_prompt = "\n\n".join(chunk_responses) + "\n\nSummarize the key findings above." |
|
messages.append({"role": "assistant", "content": "π Generating final report..."}) |
|
yield messages, None |
|
|
|
stream_text = "" |
|
for result in agent.run_gradio_chat( |
|
message=final_prompt, |
|
history=[], |
|
temperature=0.2, |
|
max_new_tokens=MAX_NEW_TOKENS, |
|
max_token=MAX_TOKENS, |
|
call_agent=False, |
|
conversation=[], |
|
): |
|
if isinstance(result, str): |
|
stream_text += result |
|
elif hasattr(result, "content"): |
|
stream_text += result.content |
|
elif isinstance(result, list): |
|
for r in result: |
|
if hasattr(r, "content"): |
|
stream_text += r.content |
|
|
|
messages[-1]["content"] = f"π Generating final report...\n\n{clean_response(stream_text)}" |
|
yield messages, None |
|
|
|
|
|
final_report = f"# \U0001f9e0 Final Patient Report\n\n{clean_response(stream_text)}" |
|
timestamp = datetime.now().strftime('%Y%m%d_%H%M%S') |
|
report_path = os.path.join(report_dir, f"report_{timestamp}.md") |
|
|
|
with open(report_path, 'w') as f: |
|
f.write(final_report) |
|
|
|
messages.append({"role": "assistant", "content": f"β
Report generated and saved: report_{timestamp}.md"}) |
|
yield messages, report_path |
|
|
|
except Exception as e: |
|
messages.append({"role": "assistant", "content": f"β Error processing file: {str(e)}"}) |
|
yield messages, None |
|
|
|
|
|
def create_ui(agent): |
|
with gr.Blocks(title="Patient History Chat", css=".gradio-container {max-width: 900px !important}") as demo: |
|
gr.Markdown("## π₯ Patient History Analysis Tool") |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=3): |
|
chatbot = gr.Chatbot( |
|
label="Clinical Assistant", |
|
show_copy_button=True, |
|
height=600, |
|
type="messages", |
|
avatar_images=( |
|
None, |
|
"https://i.imgur.com/6wX7Zb4.png" |
|
) |
|
) |
|
with gr.Column(scale=1): |
|
file_upload = gr.File( |
|
label="Upload Excel File", |
|
file_types=[".xlsx"], |
|
height=100 |
|
) |
|
analyze_btn = gr.Button( |
|
"π§ Analyze Patient History", |
|
variant="primary" |
|
) |
|
report_output = gr.File( |
|
label="Download Report", |
|
visible=False, |
|
interactive=False |
|
) |
|
|
|
analyze_btn.click( |
|
fn=lambda file: stream_final_report(agent, file), |
|
inputs=[file_upload], |
|
outputs=[chatbot, report_output], |
|
api_name="analyze" |
|
) |
|
|
|
def show_report(report_path): |
|
if report_path: |
|
return gr.File(visible=True, value=report_path) |
|
return gr.File(visible=False) |
|
|
|
return demo |
|
|
|
|
|
if __name__ == "__main__": |
|
try: |
|
agent = init_agent() |
|
demo = create_ui(agent) |
|
demo.launch( |
|
server_name="0.0.0.0", |
|
server_port=7860, |
|
show_error=True, |
|
allowed_paths=["/data/hf_cache/reports"], |
|
share=False |
|
) |
|
except Exception as e: |
|
print(f"Error: {str(e)}") |
|
sys.exit(1) |