CPS-Test-Mobile / app.py
Ali2206's picture
Update app.py
7e55ae2 verified
raw
history blame
8.07 kB
import sys
import os
import pandas as pd
import json
import gradio as gr
from datetime import datetime
import shutil
import gc
import re
import torch
from typing import List, Tuple, Dict
from concurrent.futures import ThreadPoolExecutor
# Directories
persistent_dir = "/data/hf_cache"
model_cache_dir = os.path.join(persistent_dir, "txagent_models")
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
file_cache_dir = os.path.join(persistent_dir, "cache")
report_dir = os.path.join(persistent_dir, "reports")
for d in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir]:
os.makedirs(d, exist_ok=True)
os.environ["HF_HOME"] = model_cache_dir
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir
# Paths
current_dir = os.path.dirname(os.path.abspath(__file__))
src_path = os.path.abspath(os.path.join(current_dir, "src"))
sys.path.insert(0, src_path)
from txagent.txagent import TxAgent
# Constants
MAX_MODEL_TOKENS = 131072
MAX_NEW_TOKENS = 4096
MAX_CHUNK_TOKENS = 8192
PROMPT_OVERHEAD = 300
BATCH_SIZE = 2
def estimate_tokens(text: str) -> int:
return len(text) // 4 + 1
def extract_text_from_excel(path: str) -> str:
all_text = []
xls = pd.ExcelFile(path)
for sheet in xls.sheet_names:
try:
df = xls.parse(sheet).astype(str).fillna("")
except Exception:
continue
for _, row in df.iterrows():
non_empty = [cell.strip() for cell in row if cell.strip()]
if len(non_empty) >= 2:
line = " | ".join(non_empty)
if len(line) > 15:
all_text.append(f"[{sheet}] {line}")
return "\n".join(all_text)
def split_text(text: str, max_tokens: int = MAX_CHUNK_TOKENS) -> List[str]:
effective_limit = max_tokens - PROMPT_OVERHEAD
chunks, current, tokens = [], [], 0
for line in text.split("\n"):
tks = estimate_tokens(line)
if tokens + tks > effective_limit:
if current:
chunks.append("\n".join(current))
current, tokens = [line], tks
else:
current.append(line)
tokens += tks
if current:
chunks.append("\n".join(current))
return chunks
def batch_chunks(chunks: List[str], batch_size: int = BATCH_SIZE) -> List[List[str]]:
return [chunks[i:i + batch_size] for i in range(0, len(chunks), batch_size)]
def build_prompt(chunk: str) -> str:
return f"""### Unstructured Clinical Records\n\nAnalyze the clinical notes below and summarize with:\n- Diagnostic Patterns\n- Medication Issues\n- Missed Opportunities\n- Inconsistencies\n- Follow-up Recommendations\n\n---\n\n{chunk}\n\n---\nRespond concisely in bullet points with clinical reasoning."""
def clean_response(text: str) -> str:
text = re.sub(r"\[.*?\]", "", text, flags=re.DOTALL)
text = re.sub(r"\n{3,}", "\n\n", text)
return text.strip()
def init_agent() -> TxAgent:
tool_path = os.path.join(tool_cache_dir, "new_tool.json")
if not os.path.exists(tool_path):
shutil.copy(os.path.abspath("data/new_tool.json"), tool_path)
agent = TxAgent(
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
tool_files_dict={"new_tool": tool_path},
force_finish=True,
enable_checker=True,
step_rag_num=4,
seed=100
)
agent.init_model()
return agent
def analyze_batches(agent, batches: List[List[str]]) -> List[str]:
results = []
for batch in batches:
prompt = "\n\n".join(build_prompt(c) for c in batch)
try:
response = ""
for r in agent.run_gradio_chat(
message=prompt,
history=[],
temperature=0.0,
max_new_tokens=MAX_NEW_TOKENS,
max_token=MAX_MODEL_TOKENS,
call_agent=False,
conversation=[]
):
if isinstance(r, str):
response += r
elif isinstance(r, list):
for m in r:
if hasattr(m, "content"):
response += m.content
elif hasattr(r, "content"):
response += r.content
results.append(clean_response(response))
except Exception as e:
results.append(f"❌ Error: {str(e)}")
torch.cuda.empty_cache()
gc.collect()
return results
def generate_final_summary(agent, combined: str) -> str:
final_prompt = f"""Summarize the following clinical summaries into a final medical report:\n\n{combined}"""
response = ""
for r in agent.run_gradio_chat(
message=final_prompt,
history=[],
temperature=0.0,
max_new_tokens=MAX_NEW_TOKENS,
max_token=MAX_MODEL_TOKENS,
call_agent=False,
conversation=[]
):
if isinstance(r, str):
response += r
elif isinstance(r, list):
for m in r:
if hasattr(m, "content"):
response += m.content
elif hasattr(r, "content"):
response += r.content
return clean_response(response)
def process_file(agent, file, messages: List[Dict[str, str]]) -> Tuple[List[Dict[str, str]], str]:
if not file or not hasattr(file, "name"):
messages.append({"role": "assistant", "content": "❌ Please upload a valid Excel file."})
return messages, None
messages.append({"role": "user", "content": f"πŸ“‚ Processing file: {file.name}"})
try:
extracted_text = extract_text_from_excel(file.name)
chunks = split_text(extracted_text)
batches = batch_chunks(chunks)
messages.append({"role": "assistant", "content": f"πŸ” Split into {len(batches)} batches. Analyzing..."})
batch_outputs = analyze_batches(agent, batches)
valid_outputs = [res for res in batch_outputs if not res.startswith("❌")]
if not valid_outputs:
messages.append({"role": "assistant", "content": "❌ No valid batch outputs."})
return messages, None
summary = generate_final_summary(agent, "\n\n".join(valid_outputs))
report_path = os.path.join(report_dir, f"report_{datetime.now().strftime('%Y%m%d_%H%M%S')}.md")
with open(report_path, "w", encoding="utf-8") as f:
f.write(f"# 🧠 Final Medical Report\n\n{summary}")
messages.append({"role": "assistant", "content": f"πŸ“Š Final Report:\n\n{summary}"})
messages.append({"role": "assistant", "content": f"βœ… Saved report: {os.path.basename(report_path)}"})
return messages, report_path
except Exception as e:
messages.append({"role": "assistant", "content": f"❌ Error: {str(e)}"})
return messages, None
def create_ui(agent):
with gr.Blocks(css="""
html, body { background-color: #0e1621; color: #e0e0e0; }
button { background: #007bff; color: white; border-radius: 8px; padding: 8px 16px; }
.gr-chatbot { background: #1b2533; border: 1px solid #2a2f45; border-radius: 16px; padding: 10px; }
""") as demo:
gr.Markdown("""## 🧠 CPS: Clinical Patient Support Assistant""")
chatbot = gr.Chatbot(label="CPS Assistant", height=700, type="messages")
upload = gr.File(label="Upload Excel File", file_types=[".xlsx"])
analyze_btn = gr.Button("🧠 Analyze File")
download = gr.File(label="Download Report", visible=False)
state = gr.State([])
def handle_analyze(file, chat_state):
messages, report_path = process_file(agent, file, chat_state)
return messages, gr.update(visible=bool(report_path), value=report_path), messages
analyze_btn.click(fn=handle_analyze, inputs=[upload, state], outputs=[chatbot, download, state])
return demo
if __name__ == "__main__":
agent = init_agent()
ui = create_ui(agent)
ui.launch(server_name="0.0.0.0", server_port=7860, allowed_paths=["/data/hf_cache/reports"], share=False)