CPS-Test-Mobile / app.py
Ali2206's picture
Update app.py
7a596d9 verified
raw
history blame
10.4 kB
import sys
import os
import pdfplumber
import json
import gradio as gr
from typing import List
from concurrent.futures import ThreadPoolExecutor, as_completed
import hashlib
import re
import psutil
import subprocess
from collections import defaultdict
# Persistent directory
persistent_dir = "/data/hf_cache"
os.makedirs(persistent_dir, exist_ok=True)
model_cache_dir = os.path.join(persistent_dir, "txagent_models")
file_cache_dir = os.path.join(persistent_dir, "cache")
report_dir = os.path.join(persistent_dir, "reports")
vllm_cache_dir = os.path.join(persistent_dir, "vllm_cache")
for directory in [model_cache_dir, file_cache_dir, report_dir, vllm_cache_dir]:
os.makedirs(directory, exist_ok=True)
os.environ["HF_HOME"] = model_cache_dir
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir
os.environ["VLLM_CACHE_DIR"] = vllm_cache_dir
os.environ["TOKENIZERS_PARALLELISM"] = "false"
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
current_dir = os.path.dirname(os.path.abspath(__file__))
src_path = os.path.abspath(os.path.join(current_dir, "src"))
sys.path.insert(0, src_path)
from txagent.txagent import TxAgent
def sanitize_utf8(text: str) -> str:
return text.encode("utf-8", "ignore").decode("utf-8")
def file_hash(path: str) -> str:
with open(path, "rb") as f:
return hashlib.md5(f.read()).hexdigest()
def extract_all_pages(file_path: str) -> str:
try:
text_chunks = []
with pdfplumber.open(file_path) as pdf:
for page in pdf.pages:
page_text = page.extract_text() or ""
text_chunks.append(page_text.strip())
return "\n".join(text_chunks)
except Exception as e:
return f"PDF processing error: {str(e)}"
def convert_file_to_json(file_path: str, file_type: str) -> str:
try:
h = file_hash(file_path)
cache_path = os.path.join(file_cache_dir, f"{h}.json")
if os.path.exists(cache_path):
with open(cache_path, "r", encoding="utf-8") as f:
return f.read()
if file_type == "pdf":
text = extract_all_pages(file_path)
result = json.dumps({"filename": os.path.basename(file_path), "content": text, "status": "initial"})
else:
result = json.dumps({"error": f"Unsupported file type: {file_type}"})
with open(cache_path, "w", encoding="utf-8") as f:
f.write(result)
return result
except Exception as e:
return json.dumps({"error": f"Error processing {os.path.basename(file_path)}: {str(e)}"})
def log_system_usage(tag=""):
try:
cpu = psutil.cpu_percent(interval=1)
mem = psutil.virtual_memory()
print(f"[{tag}] CPU: {cpu}% | RAM: {mem.used // (1024**2)}MB / {mem.total // (1024**2)}MB")
result = subprocess.run(
["nvidia-smi", "--query-gpu=memory.used,memory.total,utilization.gpu", "--format=csv,nounits,noheader"],
capture_output=True, text=True
)
if result.returncode == 0:
used, total, util = result.stdout.strip().split(", ")
print(f"[{tag}] GPU: {used}MB / {total}MB | Utilization: {util}%")
except Exception as e:
print(f"[{tag}] GPU/CPU monitor failed: {e}")
def clean_response(text: str) -> str:
text = sanitize_utf8(text)
# Remove all tool-related and reasoning text
text = re.sub(r"\[TOOL_CALLS\].*|(?:get_|tool\s|retrieve\s).*?\n", "", text, flags=re.DOTALL | re.IGNORECASE)
text = re.sub(r"\{'meta':\s*\{.*?\}\s*,\s*'results':\s*\[.*?\]\}\n?", "", text, flags=re.DOTALL)
text = re.sub(r"(?i)(to address|analyze the|will (start|look|use|focus)|since the|no (drug|clinical|information)|none|previous|attempt|involve|check for|explore|manually).*?\n", "", text, flags=re.DOTALL)
text = re.sub(r"\n{3,}", "\n\n", text).strip()
# Only keep text under specific headings
if not re.search(r"^(Missed Diagnoses|Medication Conflicts|Incomplete Assessments|Urgent Follow-up)", text, re.MULTILINE | re.IGNORECASE):
return ""
return text
def consolidate_findings(responses: List[str]) -> str:
# Aggregate findings under each heading, removing duplicates
findings = defaultdict(set)
headings = ["Missed Diagnoses", "Medication Conflicts", "Incomplete Assessments", "Urgent Follow-up"]
for response in responses:
if not response:
continue
# Split response into sections by heading
current_heading = None
current_points = []
for line in response.split("\n"):
line = line.strip()
if not line:
continue
if any(line.lower().startswith(h.lower()) for h in headings):
if current_heading and current_points:
findings[current_heading].update(current_points)
current_heading = next(h for h in headings if line.lower().startswith(h.lower()))
current_points = []
elif current_heading and line.startswith("-"):
current_points.append(line)
if current_heading and current_points:
findings[current_heading].update(current_points)
# Format consolidated output
output = []
for heading in headings:
if findings[heading]:
output.append(f"**{heading}**:")
output.extend(sorted(findings[heading]))
return "\n".join(output).strip() if output else "No oversights identified."
def init_agent():
print("πŸ” Initializing model...")
log_system_usage("Before Load")
agent = TxAgent(
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
force_finish=True,
enable_checker=True,
step_rag_num=1,
seed=100,
)
agent.init_model()
log_system_usage("After Load")
print("βœ… Agent Ready")
return agent
def create_ui(agent):
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("<h1 style='text-align: center;'>🩺 Clinical Oversight Assistant</h1>")
chatbot = gr.Chatbot(label="Analysis", height=600, type="messages")
file_upload = gr.File(file_types=[".pdf"], file_count="multiple")
msg_input = gr.Textbox(placeholder="Ask about potential oversights...", show_label=False)
send_btn = gr.Button("Analyze", variant="primary")
download_output = gr.File(label="Download Report")
def analyze(message: str, history: List[dict], files: List):
history.append({"role": "user", "content": message})
history.append({"role": "assistant", "content": "πŸ”„ Analyzing..."})
yield history, None
extracted = ""
file_hash_value = ""
if files:
with ThreadPoolExecutor(max_workers=6) as executor:
futures = [executor.submit(convert_file_to_json, f.name, f.name.split(".")[-1].lower()) for f in files]
results = [sanitize_utf8(f.result()) for f in as_completed(futures)]
extracted = "\n".join(results)
file_hash_value = file_hash(files[0].name) if files else ""
# Split into small chunks of 1,500 characters
chunk_size = 1500
chunks = [extracted[i:i + chunk_size] for i in range(0, len(extracted), chunk_size)]
chunk_responses = []
prompt_template = """
List doctor oversights under these headings only, with one brief point each. No tools or reasoning steps.
**Missed Diagnoses**:
**Medication Conflicts**:
**Incomplete Assessments**:
**Urgent Follow-up**:
Records:
{chunk}
"""
try:
# Process all chunks, collecting responses
for chunk in chunks:
prompt = prompt_template.format(chunk=chunk)
chunk_response = ""
for output in agent.run_gradio_chat(
message=prompt,
history=[],
temperature=0.1,
max_new_tokens=256,
max_token=4096,
call_agent=False,
conversation=[],
):
if output is None:
continue
if isinstance(output, list):
for m in output:
if hasattr(m, 'content') and m.content:
cleaned = clean_response(m.content)
if cleaned:
chunk_response += cleaned + "\n"
elif isinstance(output, str) and output.strip():
cleaned = clean_response(output)
if cleaned:
chunk_response += cleaned + "\n"
if chunk_response:
chunk_responses.append(chunk_response)
# Consolidate all responses into one final output
final_response = consolidate_findings(chunk_responses)
history[-1]["content"] = final_response
yield history, None
# Generate report file
report_path = os.path.join(report_dir, f"{file_hash_value}_report.txt") if file_hash_value else None
if report_path and final_response != "No oversights identified.":
with open(report_path, "w", encoding="utf-8") as f:
f.write(final_response)
yield history, report_path if report_path and os.path.exists(report_path) else None
except Exception as e:
print("🚨 ERROR:", e)
history[-1]["content"] = f"❌ Error: {str(e)}"
yield history, None
send_btn.click(analyze, inputs=[msg_input, gr.State([]), file_upload], outputs=[chatbot, download_output])
msg_input.submit(analyze, inputs=[msg_input, gr.State([]), file_upload], outputs=[chatbot, download_output])
return demo
if __name__ == "__main__":
print("πŸš€ Launching app...")
agent = init_agent()
demo = create_ui(agent)
demo.queue(api_open=False).launch(
server_name="0.0.0.0",
server_port=7860,
show_error=True,
allowed_paths=[report_dir],
share=False
)