|
import sys |
|
import os |
|
import pandas as pd |
|
import pdfplumber |
|
import json |
|
import gradio as gr |
|
from typing import List, Optional |
|
from concurrent.futures import ThreadPoolExecutor, as_completed |
|
import hashlib |
|
import shutil |
|
import time |
|
from functools import lru_cache |
|
from threading import Thread |
|
import re |
|
import tempfile |
|
|
|
|
|
current_dir = os.path.dirname(os.path.abspath(__file__)) |
|
src_path = os.path.abspath(os.path.join(current_dir, "src")) |
|
sys.path.insert(0, src_path) |
|
|
|
|
|
base_dir = "/data" |
|
os.makedirs(base_dir, exist_ok=True) |
|
model_cache_dir = os.path.join(base_dir, "txagent_models") |
|
tool_cache_dir = os.path.join(base_dir, "tool_cache") |
|
file_cache_dir = os.path.join(base_dir, "cache") |
|
report_dir = "/data/reports" |
|
vllm_cache_dir = os.path.join(base_dir, "vllm_cache") |
|
|
|
os.makedirs(model_cache_dir, exist_ok=True) |
|
os.makedirs(tool_cache_dir, exist_ok=True) |
|
os.makedirs(file_cache_dir, exist_ok=True) |
|
os.makedirs(report_dir, exist_ok=True) |
|
os.makedirs(vllm_cache_dir, exist_ok=True) |
|
|
|
os.environ.update({ |
|
"TRANSFORMERS_CACHE": model_cache_dir, |
|
"HF_HOME": model_cache_dir, |
|
"VLLM_CACHE_DIR": vllm_cache_dir, |
|
"TOKENIZERS_PARALLELISM": "false", |
|
"CUDA_LAUNCH_BLOCKING": "1" |
|
}) |
|
|
|
from txagent.txagent import TxAgent |
|
|
|
MEDICAL_KEYWORDS = { |
|
'diagnosis', 'assessment', 'plan', 'results', 'medications', |
|
'allergies', 'summary', 'impression', 'findings', 'recommendations' |
|
} |
|
|
|
def sanitize_utf8(text: str) -> str: |
|
return text.encode("utf-8", "ignore").decode("utf-8") |
|
|
|
def file_hash(path: str) -> str: |
|
with open(path, "rb") as f: |
|
return hashlib.md5(f.read()).hexdigest() |
|
|
|
def extract_priority_pages(file_path: str, max_pages: int = 20) -> str: |
|
try: |
|
text_chunks = [] |
|
with pdfplumber.open(file_path) as pdf: |
|
for i, page in enumerate(pdf.pages[:3]): |
|
text_chunks.append(f"=== Page {i+1} ===\n{(page.extract_text() or '').strip()}") |
|
for i, page in enumerate(pdf.pages[3:max_pages], start=4): |
|
page_text = page.extract_text() or "" |
|
if any(re.search(rf'\\b{kw}\\b', page_text.lower()) for kw in MEDICAL_KEYWORDS): |
|
text_chunks.append(f"=== Page {i} ===\n{page_text.strip()}") |
|
return "\n\n".join(text_chunks) |
|
except Exception as e: |
|
return f"PDF processing error: {str(e)}" |
|
|
|
def convert_file_to_json(file_path: str, file_type: str) -> str: |
|
try: |
|
h = file_hash(file_path) |
|
cache_path = os.path.join(file_cache_dir, f"{h}.json") |
|
if os.path.exists(cache_path): |
|
return open(cache_path, "r", encoding="utf-8").read() |
|
|
|
if file_type == "pdf": |
|
text = extract_priority_pages(file_path) |
|
result = json.dumps({"filename": os.path.basename(file_path), "content": text, "status": "initial"}) |
|
Thread(target=full_pdf_processing, args=(file_path, h)).start() |
|
|
|
elif file_type == "csv": |
|
df = pd.read_csv(file_path, encoding_errors="replace", header=None, dtype=str, skip_blank_lines=False, on_bad_lines="skip") |
|
content = df.fillna("").astype(str).values.tolist() |
|
result = json.dumps({"filename": os.path.basename(file_path), "rows": content}) |
|
|
|
elif file_type in ["xls", "xlsx"]: |
|
try: |
|
df = pd.read_excel(file_path, engine="openpyxl", header=None, dtype=str) |
|
except: |
|
df = pd.read_excel(file_path, engine="xlrd", header=None, dtype=str) |
|
content = df.fillna("").astype(str).values.tolist() |
|
result = json.dumps({"filename": os.path.basename(file_path), "rows": content}) |
|
|
|
else: |
|
return json.dumps({"error": f"Unsupported file type: {file_type}"}) |
|
|
|
with open(cache_path, "w", encoding="utf-8") as f: |
|
f.write(result) |
|
return result |
|
|
|
except Exception as e: |
|
return json.dumps({"error": f"Error processing {os.path.basename(file_path)}: {str(e)}"}) |
|
|
|
def full_pdf_processing(file_path: str, file_hash: str): |
|
try: |
|
cache_path = os.path.join(file_cache_dir, f"{file_hash}_full.json") |
|
if os.path.exists(cache_path): |
|
return |
|
with pdfplumber.open(file_path) as pdf: |
|
full_text = "\n".join([f"=== Page {i+1} ===\n{(page.extract_text() or '').strip()}" for i, page in enumerate(pdf.pages)]) |
|
result = json.dumps({"filename": os.path.basename(file_path), "content": full_text, "status": "complete"}) |
|
with open(cache_path, "w", encoding="utf-8") as f: |
|
f.write(result) |
|
with open(os.path.join(report_dir, f"{file_hash}_report.txt"), "w", encoding="utf-8") as out: |
|
out.write(full_text) |
|
except Exception as e: |
|
print(f"Background processing failed: {str(e)}") |
|
|
|
def init_agent(): |
|
default_tool_path = os.path.abspath("data/new_tool.json") |
|
target_tool_path = os.path.join(tool_cache_dir, "new_tool.json") |
|
if not os.path.exists(target_tool_path): |
|
shutil.copy(default_tool_path, target_tool_path) |
|
|
|
agent = TxAgent( |
|
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B", |
|
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B", |
|
tool_files_dict={"new_tool": target_tool_path}, |
|
force_finish=True, |
|
enable_checker=True, |
|
step_rag_num=8, |
|
seed=100, |
|
additional_default_tools=[], |
|
) |
|
agent.init_model() |
|
return agent |
|
|
|
def format_response(response: str) -> str: |
|
"""Clean and format the response for display""" |
|
|
|
response = response.replace("[TOOL_CALLS]", "").strip() |
|
|
|
|
|
if "Based on the medical records provided" in response: |
|
parts = response.split("Based on the medical records provided") |
|
if len(parts) > 1: |
|
response = "Based on the medical records provided" + parts[-1] |
|
|
|
|
|
formatted = response.replace("1. **Missed Diagnoses**:", "### 🔍 Missed Diagnoses") |
|
formatted = formatted.replace("2. **Medication Conflicts**:", "\n### 💊 Medication Conflicts") |
|
formatted = formatted.replace("3. **Incomplete Assessments**:", "\n### 📋 Incomplete Assessments") |
|
formatted = formatted.replace("4. **Abnormal Results Needing Follow-up**:", "\n### ⚠️ Abnormal Results Needing Follow-up") |
|
formatted = formatted.replace("Overall, the patient's medical records", "\n### 📝 Overall Assessment") |
|
|
|
return formatted |
|
|
|
def analyze_potential_oversights(message: str, history: list, conversation: list, files: list): |
|
start_time = time.time() |
|
try: |
|
|
|
history = history + [ |
|
{"role": "user", "content": message}, |
|
{"role": "assistant", "content": "⏳ Analyzing records for potential oversights..."} |
|
] |
|
yield history, None |
|
|
|
|
|
extracted_data = "" |
|
file_hash_value = "" |
|
if files and isinstance(files, list): |
|
with ThreadPoolExecutor(max_workers=4) as executor: |
|
futures = [executor.submit(convert_file_to_json, f.name, f.name.split(".")[-1].lower()) |
|
for f in files if hasattr(f, 'name')] |
|
extracted_data = "\n".join([sanitize_utf8(f.result()) for f in as_completed(futures)]) |
|
file_hash_value = file_hash(files[0].name) if files else "" |
|
|
|
|
|
analysis_prompt = f"""Review these medical records and identify EXACTLY what might have been missed: |
|
1. List potential missed diagnoses |
|
2. Flag any medication conflicts |
|
3. Note incomplete assessments |
|
4. Highlight abnormal results needing follow-up |
|
|
|
Medical Records:\n{extracted_data[:15000]} |
|
|
|
### Potential Oversights:\n""" |
|
|
|
|
|
full_response = "" |
|
for chunk in agent.run_gradio_chat( |
|
message=analysis_prompt, |
|
history=[], |
|
temperature=0.2, |
|
max_new_tokens=1024, |
|
max_token=4096, |
|
call_agent=False, |
|
conversation=conversation |
|
): |
|
if isinstance(chunk, str): |
|
full_response += chunk |
|
elif isinstance(chunk, list): |
|
full_response += "".join([c.content for c in chunk if hasattr(c, 'content')]) |
|
|
|
|
|
formatted = format_response(full_response) |
|
if formatted.strip(): |
|
history = history[:-1] + [{"role": "assistant", "content": formatted}] |
|
yield history, None |
|
|
|
|
|
final_output = format_response(full_response) |
|
if not final_output.strip(): |
|
final_output = "No clear oversights identified. Recommend comprehensive review." |
|
|
|
|
|
report_path = None |
|
if file_hash_value: |
|
possible_report = os.path.join(report_dir, f"{file_hash_value}_report.txt") |
|
if os.path.exists(possible_report): |
|
report_path = possible_report |
|
|
|
|
|
history = history[:-1] + [{"role": "assistant", "content": final_output}] |
|
yield history, report_path |
|
|
|
except Exception as e: |
|
history.append({"role": "assistant", "content": f"❌ Analysis failed: {str(e)}"}) |
|
yield history, None |
|
|
|
def create_ui(agent: TxAgent): |
|
with gr.Blocks(theme=gr.themes.Soft(), css=".gradio-container {max-width: 900px !important}") as demo: |
|
gr.Markdown(""" |
|
<div style='text-align: center;'> |
|
<h1>🩺 Clinical Oversight Assistant</h1> |
|
<h3>Identify potential oversights in patient care</h3> |
|
<p>Upload medical records to analyze for missed diagnoses, medication conflicts, and other potential issues.</p> |
|
</div> |
|
""") |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=2): |
|
file_upload = gr.File( |
|
label="Upload Medical Records", |
|
file_types=[".pdf", ".csv", ".xls", ".xlsx"], |
|
file_count="multiple", |
|
height=100 |
|
) |
|
msg_input = gr.Textbox( |
|
placeholder="Ask about potential oversights...", |
|
show_label=False, |
|
lines=3, |
|
max_lines=6 |
|
) |
|
send_btn = gr.Button("Analyze", variant="primary", size="lg") |
|
|
|
gr.Examples( |
|
examples=[ |
|
["What might have been missed in this patient's treatment?"], |
|
["Are there any medication conflicts in these records?"], |
|
["What abnormal results require follow-up?"], |
|
["Identify any incomplete assessments in these records"] |
|
], |
|
inputs=msg_input, |
|
label="Example Queries" |
|
) |
|
|
|
with gr.Column(scale=3): |
|
chatbot = gr.Chatbot( |
|
label="Analysis Results", |
|
height=600, |
|
bubble_full_width=False, |
|
show_copy_button=True, |
|
avatar_images=( |
|
"assets/user.png", |
|
"assets/doctor.png" |
|
) |
|
) |
|
download_output = gr.File( |
|
label="Download Full Report", |
|
visible=False |
|
) |
|
|
|
conversation_state = gr.State([]) |
|
|
|
inputs = [msg_input, chatbot, conversation_state, file_upload] |
|
outputs = [chatbot, download_output] |
|
|
|
send_btn.click( |
|
analyze_potential_oversights, |
|
inputs=inputs, |
|
outputs=outputs |
|
) |
|
msg_input.submit( |
|
analyze_potential_oversights, |
|
inputs=inputs, |
|
outputs=outputs |
|
) |
|
|
|
return demo |
|
|
|
if __name__ == "__main__": |
|
print("Initializing medical analysis agent...") |
|
agent = init_agent() |
|
|
|
print("Launching interface...") |
|
demo = create_ui(agent) |
|
demo.queue( |
|
concurrency_count=3, |
|
api_open=False |
|
).launch( |
|
server_name="0.0.0.0", |
|
server_port=7860, |
|
show_error=True, |
|
allowed_paths=["/data/reports"], |
|
share=False |
|
) |