CPS-Test-Mobile / app.py
Ali2206's picture
Update app.py
7323cb6 verified
raw
history blame
12.5 kB
import sys
import os
import pandas as pd
import pdfplumber
import json
import gradio as gr
from typing import List, Optional
from concurrent.futures import ThreadPoolExecutor, as_completed
import hashlib
import shutil
import time
from functools import lru_cache
from threading import Thread
import re
import tempfile
# Environment setup
current_dir = os.path.dirname(os.path.abspath(__file__))
src_path = os.path.abspath(os.path.join(current_dir, "src"))
sys.path.insert(0, src_path)
# Cache directories
base_dir = "/data"
os.makedirs(base_dir, exist_ok=True)
model_cache_dir = os.path.join(base_dir, "txagent_models")
tool_cache_dir = os.path.join(base_dir, "tool_cache")
file_cache_dir = os.path.join(base_dir, "cache")
report_dir = "/data/reports"
vllm_cache_dir = os.path.join(base_dir, "vllm_cache")
os.makedirs(model_cache_dir, exist_ok=True)
os.makedirs(tool_cache_dir, exist_ok=True)
os.makedirs(file_cache_dir, exist_ok=True)
os.makedirs(report_dir, exist_ok=True)
os.makedirs(vllm_cache_dir, exist_ok=True)
os.environ.update({
"TRANSFORMERS_CACHE": model_cache_dir,
"HF_HOME": model_cache_dir,
"VLLM_CACHE_DIR": vllm_cache_dir,
"TOKENIZERS_PARALLELISM": "false",
"CUDA_LAUNCH_BLOCKING": "1"
})
from txagent.txagent import TxAgent
MEDICAL_KEYWORDS = {
'diagnosis', 'assessment', 'plan', 'results', 'medications',
'allergies', 'summary', 'impression', 'findings', 'recommendations'
}
def sanitize_utf8(text: str) -> str:
return text.encode("utf-8", "ignore").decode("utf-8")
def file_hash(path: str) -> str:
with open(path, "rb") as f:
return hashlib.md5(f.read()).hexdigest()
def extract_priority_pages(file_path: str, max_pages: int = 20) -> str:
try:
text_chunks = []
with pdfplumber.open(file_path) as pdf:
for i, page in enumerate(pdf.pages[:3]):
text_chunks.append(f"=== Page {i+1} ===\n{(page.extract_text() or '').strip()}")
for i, page in enumerate(pdf.pages[3:max_pages], start=4):
page_text = page.extract_text() or ""
if any(re.search(rf'\\b{kw}\\b', page_text.lower()) for kw in MEDICAL_KEYWORDS):
text_chunks.append(f"=== Page {i} ===\n{page_text.strip()}")
return "\n\n".join(text_chunks)
except Exception as e:
return f"PDF processing error: {str(e)}"
def convert_file_to_json(file_path: str, file_type: str) -> str:
try:
h = file_hash(file_path)
cache_path = os.path.join(file_cache_dir, f"{h}.json")
if os.path.exists(cache_path):
return open(cache_path, "r", encoding="utf-8").read()
if file_type == "pdf":
text = extract_priority_pages(file_path)
result = json.dumps({"filename": os.path.basename(file_path), "content": text, "status": "initial"})
Thread(target=full_pdf_processing, args=(file_path, h)).start()
elif file_type == "csv":
df = pd.read_csv(file_path, encoding_errors="replace", header=None, dtype=str, skip_blank_lines=False, on_bad_lines="skip")
content = df.fillna("").astype(str).values.tolist()
result = json.dumps({"filename": os.path.basename(file_path), "rows": content})
elif file_type in ["xls", "xlsx"]:
try:
df = pd.read_excel(file_path, engine="openpyxl", header=None, dtype=str)
except:
df = pd.read_excel(file_path, engine="xlrd", header=None, dtype=str)
content = df.fillna("").astype(str).values.tolist()
result = json.dumps({"filename": os.path.basename(file_path), "rows": content})
else:
return json.dumps({"error": f"Unsupported file type: {file_type}"})
with open(cache_path, "w", encoding="utf-8") as f:
f.write(result)
return result
except Exception as e:
return json.dumps({"error": f"Error processing {os.path.basename(file_path)}: {str(e)}"})
def full_pdf_processing(file_path: str, file_hash: str):
try:
cache_path = os.path.join(file_cache_dir, f"{file_hash}_full.json")
if os.path.exists(cache_path):
return
with pdfplumber.open(file_path) as pdf:
full_text = "\n".join([f"=== Page {i+1} ===\n{(page.extract_text() or '').strip()}" for i, page in enumerate(pdf.pages)])
result = json.dumps({"filename": os.path.basename(file_path), "content": full_text, "status": "complete"})
with open(cache_path, "w", encoding="utf-8") as f:
f.write(result)
with open(os.path.join(report_dir, f"{file_hash}_report.txt"), "w", encoding="utf-8") as out:
out.write(full_text)
except Exception as e:
print(f"Background processing failed: {str(e)}")
def init_agent():
default_tool_path = os.path.abspath("data/new_tool.json")
target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
if not os.path.exists(target_tool_path):
shutil.copy(default_tool_path, target_tool_path)
agent = TxAgent(
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
tool_files_dict={"new_tool": target_tool_path},
force_finish=True,
enable_checker=True,
step_rag_num=8,
seed=100,
additional_default_tools=[],
)
agent.init_model()
return agent
def format_response(response: str) -> str:
"""Clean and format the response for display"""
# Remove all tool call artifacts
response = response.replace("[TOOL_CALLS]", "").strip()
# Remove duplicate sections if they exist
if "Based on the medical records provided" in response:
parts = response.split("Based on the medical records provided")
if len(parts) > 1:
response = "Based on the medical records provided" + parts[-1]
# Format sections with Markdown
formatted = response.replace("1. **Missed Diagnoses**:", "### 🔍 Missed Diagnoses")
formatted = formatted.replace("2. **Medication Conflicts**:", "\n### 💊 Medication Conflicts")
formatted = formatted.replace("3. **Incomplete Assessments**:", "\n### 📋 Incomplete Assessments")
formatted = formatted.replace("4. **Abnormal Results Needing Follow-up**:", "\n### ⚠️ Abnormal Results Needing Follow-up")
formatted = formatted.replace("Overall, the patient's medical records", "\n### 📝 Overall Assessment")
return formatted
def analyze_potential_oversights(message: str, history: list, conversation: list, files: list):
start_time = time.time()
try:
# Initial loading message
history = history + [
{"role": "user", "content": message},
{"role": "assistant", "content": "⏳ Analyzing records for potential oversights..."}
]
yield history, None
# Process uploaded files
extracted_data = ""
file_hash_value = ""
if files and isinstance(files, list):
with ThreadPoolExecutor(max_workers=4) as executor:
futures = [executor.submit(convert_file_to_json, f.name, f.name.split(".")[-1].lower())
for f in files if hasattr(f, 'name')]
extracted_data = "\n".join([sanitize_utf8(f.result()) for f in as_completed(futures)])
file_hash_value = file_hash(files[0].name) if files else ""
# Prepare the analysis prompt
analysis_prompt = f"""Review these medical records and identify EXACTLY what might have been missed:
1. List potential missed diagnoses
2. Flag any medication conflicts
3. Note incomplete assessments
4. Highlight abnormal results needing follow-up
Medical Records:\n{extracted_data[:15000]}
### Potential Oversights:\n"""
# Process the response from the agent
full_response = ""
for chunk in agent.run_gradio_chat(
message=analysis_prompt,
history=[],
temperature=0.2,
max_new_tokens=1024,
max_token=4096,
call_agent=False,
conversation=conversation
):
if isinstance(chunk, str):
full_response += chunk
elif isinstance(chunk, list):
full_response += "".join([c.content for c in chunk if hasattr(c, 'content')])
# Format and display the partial response
formatted = format_response(full_response)
if formatted.strip():
history = history[:-1] + [{"role": "assistant", "content": formatted}]
yield history, None
# Final formatting and cleanup
final_output = format_response(full_response)
if not final_output.strip():
final_output = "No clear oversights identified. Recommend comprehensive review."
# Prepare report download if available
report_path = None
if file_hash_value:
possible_report = os.path.join(report_dir, f"{file_hash_value}_report.txt")
if os.path.exists(possible_report):
report_path = possible_report
# Update history with final response
history = history[:-1] + [{"role": "assistant", "content": final_output}]
yield history, report_path
except Exception as e:
history.append({"role": "assistant", "content": f"❌ Analysis failed: {str(e)}"})
yield history, None
def create_ui(agent: TxAgent):
with gr.Blocks(theme=gr.themes.Soft(), css=".gradio-container {max-width: 900px !important}") as demo:
gr.Markdown("""
<div style='text-align: center;'>
<h1>🩺 Clinical Oversight Assistant</h1>
<h3>Identify potential oversights in patient care</h3>
<p>Upload medical records to analyze for missed diagnoses, medication conflicts, and other potential issues.</p>
</div>
""")
with gr.Row():
with gr.Column(scale=2):
file_upload = gr.File(
label="Upload Medical Records",
file_types=[".pdf", ".csv", ".xls", ".xlsx"],
file_count="multiple",
height=100
)
msg_input = gr.Textbox(
placeholder="Ask about potential oversights...",
show_label=False,
lines=3,
max_lines=6
)
send_btn = gr.Button("Analyze", variant="primary", size="lg")
gr.Examples(
examples=[
["What might have been missed in this patient's treatment?"],
["Are there any medication conflicts in these records?"],
["What abnormal results require follow-up?"],
["Identify any incomplete assessments in these records"]
],
inputs=msg_input,
label="Example Queries"
)
with gr.Column(scale=3):
chatbot = gr.Chatbot(
label="Analysis Results",
height=600,
bubble_full_width=False,
show_copy_button=True,
avatar_images=(
"assets/user.png",
"assets/doctor.png"
)
)
download_output = gr.File(
label="Download Full Report",
visible=False
)
conversation_state = gr.State([])
inputs = [msg_input, chatbot, conversation_state, file_upload]
outputs = [chatbot, download_output]
send_btn.click(
analyze_potential_oversights,
inputs=inputs,
outputs=outputs
)
msg_input.submit(
analyze_potential_oversights,
inputs=inputs,
outputs=outputs
)
return demo
if __name__ == "__main__":
print("Initializing medical analysis agent...")
agent = init_agent()
print("Launching interface...")
demo = create_ui(agent)
demo.queue(
concurrency_count=3,
api_open=False
).launch(
server_name="0.0.0.0",
server_port=7860,
show_error=True,
allowed_paths=["/data/reports"],
share=False
)