|
import sys |
|
import os |
|
import pandas as pd |
|
import pdfplumber |
|
import json |
|
import gradio as gr |
|
from typing import List, Tuple, Optional |
|
from concurrent.futures import ThreadPoolExecutor, as_completed |
|
import hashlib |
|
import shutil |
|
import re |
|
import psutil |
|
import subprocess |
|
from datetime import datetime |
|
import tiktoken |
|
|
|
|
|
persistent_dir = "/data/hf_cache" |
|
os.makedirs(persistent_dir, exist_ok=True) |
|
|
|
model_cache_dir = os.path.join(persistent_dir, "txagent_models") |
|
tool_cache_dir = os.path.join(persistent_dir, "tool_cache") |
|
file_cache_dir = os.path.join(persistent_dir, "cache") |
|
report_dir = os.path.join(persistent_dir, "reports") |
|
vllm_cache_dir = os.path.join(persistent_dir, "vllm_cache") |
|
|
|
for directory in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir, vllm_cache_dir]: |
|
os.makedirs(directory, exist_ok=True) |
|
|
|
os.environ["HF_HOME"] = model_cache_dir |
|
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir |
|
os.environ["VLLM_CACHE_DIR"] = vllm_cache_dir |
|
os.environ["TOKENIZERS_PARALLELISM"] = "false" |
|
os.environ["CUDA_LAUNCH_BLOCKING"] = "1" |
|
|
|
current_dir = os.path.dirname(os.path.abspath(__file__)) |
|
src_path = os.path.abspath(os.path.join(current_dir, "src")) |
|
sys.path.insert(0, src_path) |
|
|
|
from txagent.txagent import TxAgent |
|
|
|
|
|
MEDICAL_KEYWORDS = { |
|
'diagnosis', 'assessment', 'plan', 'results', 'medications', |
|
'allergies', 'summary', 'impression', 'findings', 'recommendations', |
|
'conclusion', 'history', 'examination', 'progress', 'discharge' |
|
} |
|
TOKENIZER = "cl100k_base" |
|
MAX_MODEL_LEN = 2048 |
|
TARGET_CHUNK_TOKENS = 1200 |
|
PROMPT_RESERVE = 300 |
|
MEDICAL_SECTION_HEADER = "=== MEDICAL SECTION ===" |
|
|
|
def sanitize_utf8(text: str) -> str: |
|
"""Ensure text is UTF-8 clean.""" |
|
return text.encode("utf-8", "ignore").decode("utf-8") |
|
|
|
def file_hash(path: str) -> str: |
|
"""Generate MD5 hash of file content.""" |
|
with open(path, "rb") as f: |
|
return hashlib.md5(f.read()).hexdigest() |
|
|
|
def count_tokens(text: str) -> int: |
|
"""Count tokens using the same method as the model""" |
|
encoding = tiktoken.get_encoding(TOKENIZER) |
|
return len(encoding.encode(text)) |
|
|
|
def extract_all_pages_with_token_count(file_path: str) -> Tuple[str, int, int]: |
|
""" |
|
Extract all pages from PDF with token counting. |
|
Returns (extracted_text, total_pages, total_tokens) |
|
""" |
|
try: |
|
text_chunks = [] |
|
total_pages = 0 |
|
total_tokens = 0 |
|
|
|
with pdfplumber.open(file_path) as pdf: |
|
total_pages = len(pdf.pages) |
|
|
|
for i, page in enumerate(pdf.pages): |
|
page_text = page.extract_text() or "" |
|
lower_text = page_text.lower() |
|
|
|
|
|
if any(re.search(rf'\b{kw}\b', lower_text) for kw in MEDICAL_KEYWORDS): |
|
section_header = f"\n{MEDICAL_SECTION_HEADER} (Page {i+1})\n" |
|
text_chunks.append(section_header + page_text.strip()) |
|
total_tokens += count_tokens(section_header) |
|
else: |
|
text_chunks.append(f"\n=== Page {i+1} ===\n{page_text.strip()}") |
|
|
|
total_tokens += count_tokens(page_text) |
|
|
|
return "\n".join(text_chunks), total_pages, total_tokens |
|
except Exception as e: |
|
return f"PDF processing error: {str(e)}", 0, 0 |
|
|
|
def convert_file_to_json(file_path: str, file_type: str) -> str: |
|
"""Convert file to JSON format with caching and token counting.""" |
|
try: |
|
h = file_hash(file_path) |
|
cache_path = os.path.join(file_cache_dir, f"{h}.json") |
|
|
|
if os.path.exists(cache_path): |
|
with open(cache_path, "r", encoding="utf-8") as f: |
|
return f.read() |
|
|
|
if file_type == "pdf": |
|
text, total_pages, total_tokens = extract_all_pages_with_token_count(file_path) |
|
result = json.dumps({ |
|
"filename": os.path.basename(file_path), |
|
"content": text, |
|
"total_pages": total_pages, |
|
"total_tokens": total_tokens, |
|
"status": "complete" |
|
}) |
|
elif file_type == "csv": |
|
chunks = [] |
|
for chunk in pd.read_csv(file_path, encoding_errors="replace", header=None, dtype=str, |
|
skip_blank_lines=False, on_bad_lines="skip", chunksize=1000): |
|
chunks.append(chunk.fillna("").astype(str).values.tolist()) |
|
content = [item for sublist in chunks for item in sublist] |
|
result = json.dumps({ |
|
"filename": os.path.basename(file_path), |
|
"rows": content, |
|
"total_tokens": count_tokens(str(content)) |
|
}) |
|
elif file_type in ["xls", "xlsx"]: |
|
try: |
|
df = pd.read_excel(file_path, engine="openpyxl", header=None, dtype=str) |
|
except Exception: |
|
df = pd.read_excel(file_path, engine="xlrd", header=None, dtype=str) |
|
content = df.fillna("").astype(str).values.tolist() |
|
result = json.dumps({ |
|
"filename": os.path.basename(file_path), |
|
"rows": content, |
|
"total_tokens": count_tokens(str(content)) |
|
}) |
|
else: |
|
result = json.dumps({"error": f"Unsupported file type: {file_type}"}) |
|
|
|
with open(cache_path, "w", encoding="utf-8") as f: |
|
f.write(result) |
|
return result |
|
except Exception as e: |
|
return json.dumps({"error": f"Error processing {os.path.basename(file_path)}: {str(e)}"}) |
|
|
|
def clean_response(text: str) -> str: |
|
"""Clean and format the model response.""" |
|
text = sanitize_utf8(text) |
|
text = re.sub(r"\[TOOL_CALLS\].*", "", text, flags=re.DOTALL) |
|
text = re.sub(r"\['get_[^\]]+\']\n?", "", text) |
|
text = re.sub(r"\{'meta':\s*\{.*?\}\s*,\s*'results':\s*\[.*?\]\}\n?", "", text, flags=re.DOTALL) |
|
text = re.sub(r"To analyze the medical records for clinical oversights.*?begin by reviewing.*?\n", "", text, flags=re.DOTALL) |
|
text = re.sub(r"\n{3,}", "\n\n", text).strip() |
|
return text |
|
|
|
def format_final_report(analysis_results: List[str], filename: str) -> str: |
|
"""Combine all analysis chunks into a well-formatted final report.""" |
|
report = [] |
|
report.append(f"COMPREHENSIVE CLINICAL OVERSIGHT ANALYSIS") |
|
report.append(f"Generated: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}") |
|
report.append(f"File: {filename}") |
|
report.append("=" * 80) |
|
|
|
sections = { |
|
"CRITICAL FINDINGS": [], |
|
"MISSED DIAGNOSES": [], |
|
"MEDICATION ISSUES": [], |
|
"ASSESSMENT GAPS": [], |
|
"FOLLOW-UP RECOMMENDATIONS": [] |
|
} |
|
|
|
for result in analysis_results: |
|
for section in sections: |
|
section_match = re.search( |
|
rf"{re.escape(section)}:?\s*\n([^*]+?)(?=\n\*|\n\n|$)", |
|
result, |
|
re.IGNORECASE | re.DOTALL |
|
) |
|
if section_match: |
|
content = section_match.group(1).strip() |
|
if content and content not in sections[section]: |
|
sections[section].append(content) |
|
|
|
if sections["CRITICAL FINDINGS"]: |
|
report.append("\n🚨 **CRITICAL FINDINGS** 🚨") |
|
for content in sections["CRITICAL FINDINGS"]: |
|
report.append(f"\n{content}") |
|
|
|
for section, contents in sections.items(): |
|
if section != "CRITICAL FINDINGS" and contents: |
|
report.append(f"\n**{section.upper()}**") |
|
for content in contents: |
|
report.append(f"\n{content}") |
|
|
|
if not any(sections.values()): |
|
report.append("\nNo significant clinical oversights identified.") |
|
|
|
report.append("\n" + "=" * 80) |
|
report.append("END OF REPORT") |
|
|
|
return "\n".join(report) |
|
|
|
def split_content_by_tokens(content: str, max_tokens: int = TARGET_CHUNK_TOKENS) -> List[str]: |
|
"""Split content into chunks that fit within token limits""" |
|
paragraphs = re.split(r"\n\s*\n", content) |
|
chunks = [] |
|
current_chunk = [] |
|
current_tokens = 0 |
|
|
|
for para in paragraphs: |
|
para_tokens = count_tokens(para) |
|
if para_tokens > max_tokens: |
|
sentences = re.split(r'(?<=[.!?])\s+', para) |
|
for sent in sentences: |
|
sent_tokens = count_tokens(sent) |
|
if current_tokens + sent_tokens > max_tokens: |
|
chunks.append("\n\n".join(current_chunk)) |
|
current_chunk = [sent] |
|
current_tokens = sent_tokens |
|
else: |
|
current_chunk.append(sent) |
|
current_tokens += sent_tokens |
|
elif current_tokens + para_tokens > max_tokens: |
|
chunks.append("\n\n".join(current_chunk)) |
|
current_chunk = [para] |
|
current_tokens = para_tokens |
|
else: |
|
current_chunk.append(para) |
|
current_tokens += para_tokens |
|
|
|
if current_chunk: |
|
chunks.append("\n\n".join(current_chunk)) |
|
|
|
return chunks |
|
|
|
def init_agent(): |
|
"""Initialize the TxAgent with proper configuration.""" |
|
print("🔁 Initializing model...") |
|
log_system_usage("Before Load") |
|
|
|
default_tool_path = os.path.abspath("data/new_tool.json") |
|
target_tool_path = os.path.join(tool_cache_dir, "new_tool.json") |
|
if not os.path.exists(target_tool_path): |
|
shutil.copy(default_tool_path, target_tool_path) |
|
|
|
agent = TxAgent( |
|
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B", |
|
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B", |
|
tool_files_dict={"new_tool": target_tool_path}, |
|
force_finish=True, |
|
enable_checker=True, |
|
step_rag_num=2, |
|
seed=100, |
|
additional_default_tools=[], |
|
) |
|
agent.init_model() |
|
log_system_usage("After Load") |
|
print("✅ Agent Ready") |
|
return agent |
|
|
|
def analyze_complete_document(content: str, filename: str, agent: TxAgent) -> str: |
|
"""Analyze complete document with strict token management""" |
|
chunks = split_content_by_tokens(content) |
|
analysis_results = [] |
|
|
|
for i, chunk in enumerate(chunks): |
|
try: |
|
|
|
base_prompt = "Analyze for:\n1. Critical\n2. Missed DX\n3. Med issues\n4. Gaps\n5. Follow-up\n\nContent:\n" |
|
|
|
|
|
prompt_tokens = count_tokens(base_prompt) |
|
max_content_tokens = MAX_MODEL_LEN - prompt_tokens - 100 |
|
|
|
|
|
chunk_tokens = count_tokens(chunk) |
|
if chunk_tokens > max_content_tokens: |
|
|
|
adjusted_chunk = "" |
|
tokens_used = 0 |
|
paragraphs = re.split(r"\n\s*\n", chunk) |
|
|
|
for para in paragraphs: |
|
para_tokens = count_tokens(para) |
|
if tokens_used + para_tokens <= max_content_tokens: |
|
adjusted_chunk += "\n\n" + para |
|
tokens_used += para_tokens |
|
else: |
|
break |
|
|
|
if not adjusted_chunk: |
|
|
|
sentences = re.split(r'(?<=[.!?])\s+', chunk) |
|
for sent in sentences: |
|
sent_tokens = count_tokens(sent) |
|
if tokens_used + sent_tokens <= max_content_tokens: |
|
adjusted_chunk += " " + sent |
|
tokens_used += sent_tokens |
|
else: |
|
break |
|
|
|
chunk = adjusted_chunk.strip() |
|
|
|
prompt = base_prompt + chunk |
|
|
|
response = "" |
|
for output in agent.run_gradio_chat( |
|
message=prompt, |
|
history=[], |
|
temperature=0.1, |
|
max_new_tokens=300, |
|
max_token=MAX_MODEL_LEN, |
|
call_agent=False, |
|
conversation=[], |
|
): |
|
if output: |
|
if isinstance(output, list): |
|
for m in output: |
|
if hasattr(m, 'content'): |
|
response += clean_response(m.content) |
|
elif isinstance(output, str): |
|
response += clean_response(output) |
|
|
|
if response: |
|
analysis_results.append(response) |
|
except Exception as e: |
|
print(f"Error processing chunk {i}: {str(e)}") |
|
continue |
|
|
|
return format_final_report(analysis_results, filename) |
|
|
|
def create_ui(agent): |
|
"""Create the Gradio interface.""" |
|
with gr.Blocks(theme=gr.themes.Soft(), title="Clinical Oversight Assistant") as demo: |
|
gr.Markdown(""" |
|
<h1 style='text-align: center;'>🩺 Comprehensive Clinical Oversight Assistant</h1> |
|
<p style='text-align: center;'>Analyze complete medical records for potential oversights</p> |
|
""") |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=3): |
|
file_upload = gr.File( |
|
file_types=[".pdf", ".csv", ".xls", ".xlsx"], |
|
file_count="multiple", |
|
label="Upload Medical Records" |
|
) |
|
msg_input = gr.Textbox( |
|
placeholder="Optional: Add specific focus areas or questions...", |
|
label="Analysis Focus" |
|
) |
|
with gr.Row(): |
|
send_btn = gr.Button("Analyze Complete Documents", variant="primary") |
|
clear_btn = gr.Button("Clear") |
|
status = gr.Textbox(label="Status", interactive=False) |
|
|
|
with gr.Column(scale=7): |
|
report_output = gr.Textbox( |
|
label="Clinical Oversight Report", |
|
lines=20, |
|
max_lines=50, |
|
interactive=False |
|
) |
|
download_output = gr.File( |
|
label="Download Full Report", |
|
visible=False |
|
) |
|
|
|
def analyze(files: List, message: str): |
|
"""Process files and generate analysis.""" |
|
if not files: |
|
yield "", None, "⚠️ Please upload at least one file to analyze." |
|
return |
|
|
|
yield "", None, "⏳ Processing documents (this may take several minutes for large files)..." |
|
|
|
file_contents = [] |
|
filenames = [] |
|
total_tokens = 0 |
|
|
|
with ThreadPoolExecutor(max_workers=4) as executor: |
|
futures = [] |
|
for f in files: |
|
futures.append(executor.submit( |
|
convert_file_to_json, |
|
f.name, |
|
f.name.split(".")[-1].lower() |
|
)) |
|
filenames.append(os.path.basename(f.name)) |
|
|
|
results = [] |
|
for future in as_completed(futures): |
|
result = sanitize_utf8(future.result()) |
|
results.append(result) |
|
try: |
|
data = json.loads(result) |
|
if "total_tokens" in data: |
|
total_tokens += data["total_tokens"] |
|
except: |
|
pass |
|
|
|
file_contents = results |
|
|
|
combined_filename = " + ".join(filenames) |
|
combined_content = "\n".join([ |
|
json.loads(fc).get("content", "") if "content" in json.loads(fc) |
|
else str(json.loads(fc).get("rows", "")) |
|
for fc in file_contents |
|
]) |
|
|
|
yield "", None, f"🔍 Analyzing content ({total_tokens//1000}k tokens)..." |
|
|
|
try: |
|
full_report = analyze_complete_document( |
|
combined_content, |
|
combined_filename, |
|
agent |
|
) |
|
|
|
file_hash_value = hashlib.md5(combined_content.encode()).hexdigest() |
|
report_path = os.path.join(report_dir, f"{file_hash_value}_report.txt") |
|
with open(report_path, "w", encoding="utf-8") as f: |
|
f.write(full_report) |
|
|
|
yield full_report, report_path if os.path.exists(report_path) else None, "✅ Analysis complete!" |
|
|
|
except Exception as e: |
|
error_msg = f"❌ Error during analysis: {str(e)}" |
|
print(error_msg) |
|
yield "", None, error_msg |
|
|
|
send_btn.click( |
|
fn=analyze, |
|
inputs=[file_upload, msg_input], |
|
outputs=[report_output, download_output, status], |
|
api_name="analyze" |
|
) |
|
|
|
clear_btn.click( |
|
fn=lambda: ("", None, ""), |
|
inputs=None, |
|
outputs=[report_output, download_output, status] |
|
) |
|
|
|
return demo |
|
|
|
if __name__ == "__main__": |
|
print("🚀 Launching app...") |
|
try: |
|
import tiktoken |
|
except ImportError: |
|
print("Installing tiktoken...") |
|
subprocess.run([sys.executable, "-m", "pip", "install", "tiktoken"]) |
|
|
|
agent = init_agent() |
|
demo = create_ui(agent) |
|
demo.queue( |
|
api_open=False, |
|
max_size=20 |
|
).launch( |
|
server_name="0.0.0.0", |
|
server_port=7860, |
|
show_error=True, |
|
allowed_paths=[report_dir], |
|
share=False |
|
) |