CPS-Test-Mobile / app.py
Ali2206's picture
Update app.py
6358a36 verified
raw
history blame
16.3 kB
import sys
import os
import pandas as pd
import pdfplumber
import json
import gradio as gr
from typing import List
from concurrent.futures import ThreadPoolExecutor, as_completed
import hashlib
import shutil
import re
import psutil
import subprocess
import multiprocessing
from functools import partial
import time
import logging
# Setup logging
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s", filename="/home/user/clinical_oversight_analyzer.log")
logger = logging.getLogger(__name__)
# Persistent directory
persistent_dir = "/data/hf_cache"
os.makedirs(persistent_dir, exist_ok=True)
model_cache_dir = os.path.join(persistent_dir, "txagent_models")
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
file_cache_dir = os.path.join(persistent_dir, "cache")
report_dir = os.path.join(persistent_dir, "reports")
vllm_cache_dir = os.path.join(persistent_dir, "vllm_cache")
for directory in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir, vllm_cache_dir]:
os.makedirs(directory, exist_ok=True)
os.environ["HF_HOME"] = model_cache_dir
os.environ["VLLM_CACHE_DIR"] = vllm_cache_dir
os.environ["TOKENIZERS_PARALLELISM"] = "false"
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
# Remove TRANSFORMERS_CACHE to suppress warning
if "TRANSFORMERS_CACHE" in os.environ:
del os.environ["TRANSFORMERS_CACHE"]
current_dir = os.path.dirname(os.path.abspath(__file__))
src_path = os.path.abspath(os.path.join(current_dir, "src"))
sys.path.insert(0, src_path)
from txagent.txagent import TxAgent
def sanitize_utf8(text: str) -> str:
return text.encode("utf-8", "ignore").decode("utf-8")
def file_hash(path: str) -> str:
with open(path, "rb") as f:
return hashlib.md5(f.read()).hexdigest()
def batch_hash(chunks: List[str], prompt: str) -> str:
return hashlib.md5(("".join(chunks) + prompt).encode("utf-8")).hexdigest()
def extract_page_range(file_path: str, start_page: int, end_page: int) -> str:
"""Extract text from a range of PDF pages."""
try:
text_chunks = []
with pdfplumber.open(file_path) as pdf:
for page in pdf.pages[start_page:end_page]:
page_text = page.extract_text() or ""
text_chunks.append(f"=== Page {start_page + pdf.pages.index(page) + 1} ===\n{page_text.strip()}")
return "\n\n".join(text_chunks)
except Exception as e:
logger.error(f"Error extracting pages {start_page}-{end_page}: {e}")
return ""
def extract_all_pages(file_path: str, progress_callback=None) -> str:
"""Extract text from all pages of a PDF using parallel processing."""
try:
with pdfplumber.open(file_path) as pdf:
total_pages = len(pdf.pages)
if total_pages == 0:
return ""
num_processes = min(6, multiprocessing.cpu_count())
pages_per_process = max(1, total_pages // num_processes)
ranges = [(i * pages_per_process, min((i + 1) * pages_per_process, total_pages))
for i in range(num_processes)]
if ranges[-1][1] != total_pages:
ranges[-1] = (ranges[-1][0], total_pages)
with multiprocessing.Pool(processes=num_processes) as pool:
extract_func = partial(extract_page_range, file_path)
results = []
for idx, result in enumerate(pool.starmap(extract_func, ranges)):
results.append(result)
if progress_callback:
processed_pages = min((idx + 1) * pages_per_process, total_pages)
progress_callback(processed_pages, total_pages)
return "\n\n".join(filter(None, results))
except Exception as e:
logger.error(f"PDF processing error: {e}")
return f"PDF processing error: {str(e)}"
def convert_file_to_json(file_path: str, file_type: str, progress_callback=None) -> str:
try:
h = file_hash(file_path)
cache_path = os.path.join(file_cache_dir, f"{h}.json")
if os.path.exists(cache_path):
with open(cache_path, "r", encoding="utf-8") as f:
return f.read()
if file_type == "pdf":
text = extract_all_pages(file_path, progress_callback)
result = json.dumps({"filename": os.path.basename(file_path), "content": text, "status": "initial"})
elif file_type == "csv":
df = pd.read_csv(file_path, encoding_errors="replace", header=None, dtype=str,
skip_blank_lines=False, on_bad_lines="skip")
content = df.fillna("").astype(str).values.tolist()
result = json.dumps({"filename": os.path.basename(file_path), "rows": content})
elif file_type in ["xls", "xlsx"]:
try:
df = pd.read_excel(file_path, engine="openpyxl", header=None, dtype=str)
except Exception:
df = pd.read_excel(file_path, engine="xlrd", header=None, dtype=str)
content = df.fillna("").astype(str).values.tolist()
result = json.dumps({"filename": os.path.basename(file_path), "rows": content})
else:
result = json.dumps({"error": f"Unsupported file type: {file_type}"})
with open(cache_path, "w", encoding="utf-8") as f:
f.write(result)
return result
except Exception as e:
logger.error(f"Error processing {file_path}: {e}")
return json.dumps({"error": f"Error processing {os.path.basename(file_path)}: {str(e)}"})
def log_system_usage(tag=""):
try:
cpu = psutil.cpu_percent(interval=1)
mem = psutil.virtual_memory()
logger.info(f"[{tag}] CPU: {cpu}% | RAM: {mem.used // (1024**2)}MB / {mem.total // (1024**2)}MB")
result = subprocess.run(
["nvidia-smi", "--query-gpu=memory.used,memory.total,utilization.gpu", "--format=csv,nounits,noheader"],
capture_output=True, text=True
)
if result.returncode == 0:
used, total, util = result.stdout.strip().split(", ")
logger.info(f"[{tag}] GPU: {used}MB / {total}MB | Utilization: {util}%")
except Exception as e:
logger.error(f"[{tag}] GPU/CPU monitor failed: {e}")
def clean_response(text: str) -> str:
"""Clean TxAgent response to group findings by section without tool names."""
text = sanitize_utf8(text)
# Remove tool tags, None, and reasoning
text = re.sub(r"\[TOOL:[^\]]+\]|\bNone\b|To analyze the patient record excerpt.*?medications\.|Since the previous attempts.*?\.|I need to.*?medications\.|Retrieving tools.*?\.", "", text, flags=re.DOTALL)
text = re.sub(r"\n{3,}", "\n\n", text)
text = re.sub(r"[^\n#\-\*\w\s\.\,\:\(\)]+", "", text)
sections = {}
current_section = None
lines = text.splitlines()
for line in lines:
line = line.strip()
if not line:
continue
section_match = re.match(r"###\s*(Drugs|Missed Diagnoses|Medication Conflicts|Incomplete Assessments|Urgent Follow-up)", line)
if section_match:
current_section = section_match.group(1)
if current_section not in sections:
sections[current_section] = []
continue
finding_match = re.match(r"-\s*.+", line)
if finding_match and current_section and not re.match(r"-\s*No issues identified", line):
sections[current_section].append(line)
cleaned = []
for heading, findings in sections.items():
if findings:
cleaned.append(f"### {heading}\n" + "\n".join(findings))
text = "\n\n".join(cleaned).strip()
if not text:
text = ""
return text
def init_agent():
logger.info("Initializing model...")
log_system_usage("Before Load")
default_tool_path = os.path.abspath("data/new_tool.json")
target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
if not os.path.exists(target_tool_path):
shutil.copy(default_tool_path, target_tool_path)
agent = TxAgent(
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
tool_files_dict={"new_tool": target_tool_path},
force_finish=True,
enable_checker=True,
step_rag_num=1,
seed=100,
additional_default_tools=[],
)
agent.init_model()
log_system_usage("After Load")
logger.info("Agent Ready")
return agent
def process_batch(agent, chunks: List[str], cache_path: str, prompt_template: str) -> str:
"""Process a batch of chunks in a single prompt."""
if not any(chunk.strip() for chunk in chunks):
logger.warning("All chunks are empty, skipping analysis...")
return "No oversights identified in the provided records."
batch_id = batch_hash(chunks, prompt_template)
batch_cache_path = os.path.join(cache_path, f"batch_{batch_id}.txt")
if os.path.exists(batch_cache_path):
with open(batch_cache_path, "r", encoding="utf-8") as f:
logger.info("Cache hit for batch")
return f.read()
# Combine chunks into one prompt
chunk_texts = [f"Chunk {i+1}:\n{chunk[:500]}" for i, chunk in enumerate(chunks) if chunk.strip()]
combined_text = "\n\n".join(chunk_texts)
prompt = prompt_template.format(chunks=combined_text)
response = ""
try:
for output in agent.run_gradio_chat(
message=prompt,
history=[],
temperature=0.2,
max_new_tokens=256,
max_token=1024,
call_agent=False,
conversation=[],
):
if output is None:
continue
if isinstance(output, list):
for m in output:
if hasattr(m, 'content') and m.content:
cleaned = clean_response(m.content)
if cleaned and re.search(r"###\s*\w+", cleaned):
response += cleaned + "\n\n"
elif isinstance(output, str) and output.strip():
cleaned = clean_response(output)
if cleaned and re.search(r"###\s*\w+", cleaned):
response += cleaned + "\n\n"
except Exception as e:
logger.error(f"Error processing batch: {e}")
return f"Error occurred: {str(e)}"
if response:
with open(batch_cache_path, "w", encoding="utf-8") as f:
f.write(response)
return response
return "No oversights identified in the provided records."
def create_ui(agent):
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("<h1 style='text-align: center;'>🩺 Clinical Oversight Assistant</h1>")
chatbot = gr.Chatbot(label="Analysis", height=600, type="messages")
file_upload = gr.File(file_types=[".pdf", ".csv", ".xls", ".xlsx"], file_count="multiple")
msg_input = gr.Textbox(placeholder="Ask about potential oversights...", show_label=False)
send_btn = gr.Button("Analyze", variant="primary")
download_output = gr.File(label="Download Full Report")
prompt_template = """
You are a medical analysis assistant. Analyze the following patient record excerpts for clinical oversights and provide a concise, evidence-based summary in markdown format. Group findings under the following headings: 'Drugs', 'Missed Diagnoses', 'Medication Conflicts', 'Incomplete Assessments', 'Urgent Follow-up'. For each finding, include:
- Clinical context (why the issue was missed or relevant details from the record).
- Potential risks if unaddressed (e.g., disease progression, adverse events).
- Actionable recommendations (e.g., tests, referrals, medication adjustments).
Output ONLY the markdown-formatted findings, with bullet points under each heading. Do NOT include tool references, reasoning, or intermediate steps. If no issues are found for a section, omit that section. Ensure the output is specific to the provided text and avoids generic responses.
Example Output:
### Drugs
- Opioid use disorder not addressed. Missed due to lack of screening. Risks: overdose. Recommend: addiction specialist referral.
### Missed Diagnoses
- Elevated BP noted without diagnosis. Missed due to inconsistent visits. Risks: stroke. Recommend: BP monitoring, antihypertensives.
### Incomplete Assessments
- Chest pain not evaluated. Time constraints likely cause. Risks: cardiac issues. Recommend: ECG, stress test.
### Urgent Follow-up
- Abnormal creatinine not addressed. Delayed lab review. Risks: renal failure. Recommend: nephrology referral.
Patient Record Excerpts:
{chunks}
"""
def analyze(message: str, history: List[dict], files: List):
history.append({"role": "user", "content": message})
history.append({"role": "assistant", "content": "⏳ Extracting text from files..."})
yield history, None
extracted = ""
file_hash_value = ""
if files:
total_pages = 0
processed_pages = 0
def update_extraction_progress(current, total):
nonlocal processed_pages, total_pages
processed_pages = current
total_pages = total
animation = ["πŸŒ€", "πŸ”„", "βš™οΈ", "πŸ”ƒ"][(int(time.time() * 2) % 4)]
history[-1] = {"role": "assistant", "content": f"Extracting text... {animation} Page {processed_pages}/{total_pages}"}
return history, None
with ThreadPoolExecutor(max_workers=6) as executor:
futures = [executor.submit(convert_file_to_json, f.name, f.name.split(".")[-1].lower(), update_extraction_progress) for f in files]
results = [sanitize_utf8(f.result()) for f in as_completed(futures)]
extracted = "\n".join(results)
file_hash_value = file_hash(files[0].name) if files else ""
history.pop()
history.append({"role": "assistant", "content": "βœ… Text extraction complete."})
yield history, None
chunk_size = 500 # Fixed for speed
max_chunks = 5 # Fixed for speed
chunks = [extracted[i:i + chunk_size] for i in range(0, len(extracted), chunk_size)]
chunks = chunks[:max_chunks] # Limit to 5 chunks
if not chunks:
history.append({"role": "assistant", "content": "No content to analyze."})
yield history, None
return
try:
animation = ["πŸ”", "πŸ“Š", "🧠", "πŸ”Ž"][(int(time.time() * 2) % 4)]
history.append({"role": "assistant", "content": f"Analyzing chunks 1-5... {animation}"})
yield history, None
response = process_batch(agent, chunks, file_cache_dir, prompt_template)
history[-1] = {"role": "assistant", "content": response.strip()}
yield history, None
report_path = os.path.join(report_dir, f"{file_hash_value}_report.txt") if file_hash_value else None
if report_path and response.strip() and "No oversights identified" not in response and "Error occurred" not in response:
with open(report_path, "w", encoding="utf-8") as f:
f.write(response)
yield history, report_path if report_path and os.path.exists(report_path) else None
except Exception as e:
logger.error(f"Analysis error: {e}")
history.append({"role": "assistant", "content": f"❌ Error occurred: {str(e)}"})
yield history, None
send_btn.click(analyze, inputs=[msg_input, gr.State([]), file_upload], outputs=[chatbot, download_output])
msg_input.submit(analyze, inputs=[msg_input, gr.State([]), file_upload], outputs=[chatbot, download_output])
return demo
if __name__ == "__main__":
logger.info("Launching app...")
agent = init_agent()
demo = create_ui(agent)
demo.queue(api_open=False).launch(
server_name="0.0.0.0",
server_port=7860,
show_error=True,
allowed_paths=[report_dir],
share=False
)