CPS-Test-Mobile / app.py
Ali2206's picture
Update app.py
543491f verified
raw
history blame
17.9 kB
import sys
import os
import pandas as pd
import pdfplumber
import json
import gradio as gr
from typing import List, Dict, Optional, Generator
from concurrent.futures import ThreadPoolExecutor, as_completed
import hashlib
import shutil
import re
import psutil
import subprocess
import logging
import torch
import gc
from diskcache import Cache
import time
from transformers import AutoTokenizer
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Persistent directory
persistent_dir = "/data/hf_cache"
os.makedirs(persistent_dir, exist_ok=True)
model_cache_dir = os.path.join(persistent_dir, "txagent_models")
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
file_cache_dir = os.path.join(persistent_dir, "cache")
report_dir = os.path.join(persistent_dir, "reports")
vllm_cache_dir = os.path.join(persistent_dir, "vllm_cache")
for directory in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir, vllm_cache_dir]:
os.makedirs(directory, exist_ok=True)
os.environ["HF_HOME"] = model_cache_dir
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir
os.environ["VLLM_CACHE_DIR"] = vllm_cache_dir
os.environ["TOKENIZERS_PARALLELISM"] = "false"
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
current_dir = os.path.dirname(os.path.abspath(__file__))
src_path = os.path.abspath(os.path.join(current_dir, "src"))
sys.path.insert(0, src_path)
from txagent.txagent import TxAgent
# Initialize cache with 10GB limit
cache = Cache(file_cache_dir, size_limit=10 * 1024**3)
# Initialize tokenizer for precise chunking
tokenizer = AutoTokenizer.from_pretrained("mims-harvard/TxAgent-T1-Llama-3.1-8B")
def sanitize_utf8(text: str) -> str:
return text.encode("utf-8", "ignore").decode("utf-8")
def file_hash(path: str) -> str:
with open(path, "rb") as f:
return hashlib.md5(f.read()).hexdigest()
def extract_all_pages(file_path: str, progress_callback=None) -> str:
try:
with pdfplumber.open(file_path) as pdf:
total_pages = len(pdf.pages)
if total_pages == 0:
return ""
batch_size = 10
batches = [(i, min(i + batch_size, total_pages)) for i in range(0, total_pages, batch_size)]
text_chunks = [""] * total_pages
processed_pages = 0
def extract_batch(start: int, end: int) -> List[tuple]:
results = []
with pdfplumber.open(file_path) as pdf:
for page in pdf.pages[start:end]:
page_num = start + pdf.pages.index(page)
page_text = page.extract_text() or ""
results.append((page_num, f"=== Page {page_num + 1} ===\n{page_text.strip()}"))
return results
with ThreadPoolExecutor(max_workers=6) as executor:
futures = [executor.submit(extract_batch, start, end) for start, end in batches]
for future in as_completed(futures):
for page_num, text in future.result():
text_chunks[page_num] = text
processed_pages += batch_size
if progress_callback:
progress_callback(min(processed_pages, total_pages), total_pages)
return "\n\n".join(filter(None, text_chunks))
except Exception as e:
logger.error("PDF processing error: %s", e)
return f"PDF processing error: {str(e)}"
def excel_to_json(file_path: str) -> List[Dict]:
"""Convert Excel file to JSON with optimized processing"""
try:
# First try with openpyxl (faster for xlsx)
try:
df = pd.read_excel(file_path, engine='openpyxl', header=None, dtype=str)
except Exception:
# Fall back to xlrd if needed
df = pd.read_excel(file_path, engine='xlrd', header=None, dtype=str)
# Convert to list of lists with null handling
content = df.where(pd.notnull(df), "").astype(str).values.tolist()
return [{
"filename": os.path.basename(file_path),
"rows": content,
"type": "excel"
}]
except Exception as e:
logger.error(f"Error processing Excel file: {e}")
return [{"error": f"Error processing Excel file: {str(e)}"}]
def csv_to_json(file_path: str) -> List[Dict]:
"""Convert CSV file to JSON with optimized processing"""
try:
# Read CSV in chunks if large
chunks = []
for chunk in pd.read_csv(
file_path,
header=None,
dtype=str,
encoding_errors='replace',
on_bad_lines='skip',
chunksize=10000
):
chunks.append(chunk)
df = pd.concat(chunks) if chunks else pd.DataFrame()
content = df.where(pd.notnull(df), "").astype(str).values.tolist()
return [{
"filename": os.path.basename(file_path),
"rows": content,
"type": "csv"
}]
except Exception as e:
logger.error(f"Error processing CSV file: {e}")
return [{"error": f"Error processing CSV file: {str(e)}"}]
def process_file(file_path: str, file_type: str) -> List[Dict]:
"""Process file based on type and return JSON data"""
try:
if file_type == "pdf":
text = extract_all_pages(file_path)
return [{
"filename": os.path.basename(file_path),
"content": text,
"status": "initial",
"type": "pdf"
}]
elif file_type in ["xls", "xlsx"]:
return excel_to_json(file_path)
elif file_type == "csv":
return csv_to_json(file_path)
else:
return [{"error": f"Unsupported file type: {file_type}"}]
except Exception as e:
logger.error("Error processing %s: %s", os.path.basename(file_path), e)
return [{"error": f"Error processing {os.path.basename(file_path)}: {str(e)}"}]
def tokenize_and_chunk(text: str, max_tokens: int = 1800) -> List[str]:
"""Split text into chunks based on token count"""
tokens = tokenizer.encode(text)
chunks = []
for i in range(0, len(tokens), max_tokens):
chunk_tokens = tokens[i:i + max_tokens]
chunks.append(tokenizer.decode(chunk_tokens))
return chunks
def log_system_usage(tag=""):
try:
cpu = psutil.cpu_percent(interval=1)
mem = psutil.virtual_memory()
logger.info("[%s] CPU: %.1f%% | RAM: %dMB / %dMB", tag, cpu, mem.used // (1024**2), mem.total // (1024**2))
result = subprocess.run(
["nvidia-smi", "--query-gpu=memory.used,memory.total,utilization.gpu", "--format=csv,nounits,noheader"],
capture_output=True, text=True
)
if result.returncode == 0:
used, total, util = result.stdout.strip().split(", ")
logger.info("[%s] GPU: %sMB / %sMB | Utilization: %s%%", tag, used, total, util)
except Exception as e:
logger.error("[%s] GPU/CPU monitor failed: %s", tag, e)
def clean_response(text: str) -> str:
text = sanitize_utf8(text)
text = re.sub(r"\[.*?\]|\bNone\b|To analyze the patient record excerpt.*?medications\.|Since the previous attempts.*?\.|I need to.*?medications\.|Retrieving tools.*?\.", "", text, flags=re.DOTALL)
diagnoses = []
lines = text.splitlines()
in_diagnoses_section = False
for line in lines:
line = line.strip()
if not line:
continue
if re.match(r"###\s*Missed Diagnoses", line):
in_diagnoses_section = True
continue
if re.match(r"###\s*(Medication Conflicts|Incomplete Assessments|Urgent Follow-up)", line):
in_diagnoses_section = False
continue
if in_diagnoses_section and re.match(r"-\s*.+", line):
diagnosis = re.sub(r"^\-\s*", "", line).strip()
if diagnosis and not re.match(r"No issues identified", diagnosis, re.IGNORECASE):
diagnoses.append(diagnosis)
text = " ".join(diagnoses)
text = re.sub(r"\s+", " ", text).strip()
text = re.sub(r"[^\w\s\.\,\(\)\-]", "", text)
return text if text else ""
def summarize_findings(combined_response: str) -> str:
chunks = combined_response.split("--- Analysis for Chunk")
diagnoses = []
for chunk in chunks:
chunk = chunk.strip()
if not chunk or "No oversights identified" in chunk:
continue
lines = chunk.splitlines()
in_diagnoses_section = False
for line in lines:
line = line.strip()
if not line:
continue
if re.match(r"###\s*Missed Diagnoses", line):
in_diagnoses_section = True
continue
if re.match(r"###\s*(Medication Conflicts|Incomplete Assessments|Urgent Follow-up)", line):
in_diagnoses_section = False
continue
if in_diagnoses_section and re.match(r"-\s*.+", line):
diagnosis = re.sub(r"^\-\s*", "", line).strip()
if diagnosis and not re.match(r"No issues identified", diagnosis, re.IGNORECASE):
diagnoses.append(diagnosis)
seen = set()
unique_diagnoses = [d for d in diagnoses if not (d in seen or seen.add(d))]
if not unique_diagnoses:
return "No missed diagnoses were identified in the provided records."
summary = "Missed diagnoses include " + ", ".join(unique_diagnoses[:-1])
if len(unique_diagnoses) > 1:
summary += f", and {unique_diagnoses[-1]}"
elif len(unique_diagnoses) == 1:
summary = "Missed diagnoses include " + unique_diagnoses[0]
summary += ", all of which require urgent clinical review to prevent potential adverse outcomes."
return summary.strip()
def init_agent():
logger.info("Initializing model...")
log_system_usage("Before Load")
default_tool_path = os.path.abspath("data/new_tool.json")
target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
if not os.path.exists(target_tool_path):
shutil.copy(default_tool_path, target_tool_path)
agent = TxAgent(
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
tool_files_dict={"new_tool": target_tool_path},
force_finish=True,
enable_checker=False,
step_rag_num=4,
seed=100,
additional_default_tools=[],
)
agent.init_model()
log_system_usage("After Load")
logger.info("Agent Ready")
return agent
def create_ui(agent):
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("<h1 style='text-align: center;'>🩺 Clinical Oversight Assistant</h1>")
chatbot = gr.Chatbot(label="Detailed Analysis", height=600, type="messages")
final_summary = gr.Markdown(label="Summary of Missed Diagnoses")
file_upload = gr.File(file_types=[".pdf", ".csv", ".xls", ".xlsx"], file_count="multiple")
msg_input = gr.Textbox(placeholder="Ask about potential oversights...", show_label=False)
send_btn = gr.Button("Analyze", variant="primary")
download_output = gr.File(label="Download Full Report")
progress_bar = gr.Progress()
prompt_template = """
Analyze the patient record excerpt for missed diagnoses only. Provide a concise, evidence-based summary as a single paragraph without headings or bullet points. Include specific clinical findings (e.g., 'elevated blood pressure (160/95) on page 10'), their potential implications (e.g., 'may indicate untreated hypertension'), and a recommendation for urgent review. Do not include other oversight categories like medication conflicts. If no missed diagnoses are found, state 'No missed diagnoses identified' in a single sentence.
Patient Record Excerpt (Chunk {0} of {1}):
{chunk}
"""
def analyze(message: str, history: List[dict], files: List, progress=gr.Progress()):
history.append({"role": "user", "content": message})
yield history, None, ""
extracted = []
file_hash_value = ""
if files:
# Process files in parallel
with ThreadPoolExecutor(max_workers=4) as executor:
futures = []
for f in files:
file_type = f.name.split(".")[-1].lower()
futures.append(executor.submit(
process_file,
f.name,
file_type
))
for future in as_completed(futures):
try:
extracted.extend(future.result())
except Exception as e:
logger.error(f"File processing error: {e}")
extracted.append({"error": f"Error processing file: {str(e)}"})
file_hash_value = file_hash(files[0].name) if files else ""
history.append({"role": "assistant", "content": "✅ File processing complete"})
yield history, None, ""
# Convert extracted data to JSON text
text_content = "\n".join(json.dumps(item) for item in extracted)
# Tokenize and chunk the content properly
chunks = tokenize_and_chunk(text_content)
combined_response = ""
batch_size = 2 # Reduced batch size to prevent token overflow
try:
for batch_idx in range(0, len(chunks), batch_size):
batch_chunks = chunks[batch_idx:batch_idx + batch_size]
batch_prompts = [
prompt_template.format(
batch_idx + i + 1,
len(chunks),
chunk=chunk[:1800] # Conservative chunk size
)
for i, chunk in enumerate(batch_chunks)
]
progress((batch_idx) / len(chunks),
desc=f"Analyzing batch {(batch_idx // batch_size) + 1}/{(len(chunks) + batch_size - 1) // batch_size}")
# Process batch in parallel
with ThreadPoolExecutor(max_workers=len(batch_prompts)) as executor:
future_to_prompt = {
executor.submit(
agent.run_gradio_chat,
prompt, [], 0.2, 512, 2048, False, []
): prompt
for prompt in batch_prompts
}
for future in as_completed(future_to_prompt):
chunk_response = ""
for chunk_output in future.result():
if chunk_output is None:
continue
if isinstance(chunk_output, list):
for m in chunk_output:
if hasattr(m, 'content') and m.content:
cleaned = clean_response(m.content)
if cleaned:
chunk_response += cleaned + " "
elif isinstance(chunk_output, str) and chunk_output.strip():
cleaned = clean_response(chunk_output)
if cleaned:
chunk_response += cleaned + " "
combined_response += f"--- Analysis for Chunk {batch_idx + 1} ---\n{chunk_response.strip()}\n"
history[-1] = {"role": "assistant", "content": combined_response.strip()}
yield history, None, ""
# Clean up memory
torch.cuda.empty_cache()
gc.collect()
# Generate final summary
summary = summarize_findings(combined_response)
report_path = os.path.join(report_dir, f"{file_hash_value}_report.txt") if file_hash_value else None
if report_path:
with open(report_path, "w", encoding="utf-8") as f:
f.write(combined_response + "\n\n" + summary)
yield history, report_path if report_path and os.path.exists(report_path) else None, summary
except Exception as e:
logger.error("Analysis error: %s", e)
history.append({"role": "assistant", "content": f"❌ Error occurred: {str(e)}"})
yield history, None, f"Error occurred during analysis: {str(e)}"
send_btn.click(analyze, inputs=[msg_input, gr.State([]), file_upload], outputs=[chatbot, download_output, final_summary])
msg_input.submit(analyze, inputs=[msg_input, gr.State([]), file_upload], outputs=[chatbot, download_output, final_summary])
return demo
if __name__ == "__main__":
try:
logger.info("Launching app...")
agent = init_agent()
demo = create_ui(agent)
demo.queue(api_open=False).launch(
server_name="0.0.0.0",
server_port=7860,
show_error=True,
allowed_paths=[report_dir],
share=False
)
finally:
if torch.distributed.is_initialized():
torch.distributed.destroy_process_group()