CPS-Test-Mobile / app.py
Ali2206's picture
Update app.py
1dd5b3f verified
raw
history blame
9.07 kB
import sys
import os
import gc
import json
import shutil
import re
import time
import pandas as pd
import gradio as gr
import torch
from typing import List, Tuple, Dict, Union
from concurrent.futures import ThreadPoolExecutor, as_completed
from datetime import datetime
# Constants
MAX_MODEL_TOKENS = 131072
MAX_NEW_TOKENS = 4096
MAX_CHUNK_TOKENS = 8192
PROMPT_OVERHEAD = 300
BATCH_SIZE = 4 # 4 chunks per batch
MAX_WORKERS = 6 # 6 parallel batches
# Paths
persistent_dir = "/data/hf_cache"
model_cache_dir = os.path.join(persistent_dir, "txagent_models")
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
file_cache_dir = os.path.join(persistent_dir, "cache")
report_dir = os.path.join(persistent_dir, "reports")
for d in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir]:
os.makedirs(d, exist_ok=True)
os.environ["HF_HOME"] = model_cache_dir
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir
current_dir = os.path.dirname(os.path.abspath(__file__))
src_path = os.path.abspath(os.path.join(current_dir, "src"))
sys.path.insert(0, src_path)
from txagent.txagent import TxAgent
def estimate_tokens(text: str) -> int:
return len(text) // 4 + 1
def clean_response(text: str) -> str:
text = re.sub(r"\[.*?\]|\bNone\b", "", text, flags=re.DOTALL)
text = re.sub(r"\n{3,}", "\n\n", text)
text = re.sub(r"[^\n#\-\*\w\s\.,:\(\)]+", "", text)
return text.strip()
def extract_text_from_excel(path: str) -> str:
all_text = []
xls = pd.ExcelFile(path)
for sheet_name in xls.sheet_names:
try:
df = xls.parse(sheet_name).astype(str).fillna("")
except Exception:
continue
for _, row in df.iterrows():
non_empty = [cell.strip() for cell in row if cell.strip()]
if len(non_empty) >= 2:
line = " | ".join(non_empty)
if len(line) > 15:
all_text.append(f"[{sheet_name}] {line}")
return "\n".join(all_text)
def split_text(text: str, max_tokens=MAX_CHUNK_TOKENS) -> List[str]:
effective_limit = max_tokens - PROMPT_OVERHEAD
chunks, current, current_tokens = [], [], 0
for line in text.split("\n"):
tokens = estimate_tokens(line)
if current_tokens + tokens > effective_limit:
if current:
chunks.append("\n".join(current))
current, current_tokens = [line], tokens
else:
current.append(line)
current_tokens += tokens
if current:
chunks.append("\n".join(current))
return chunks
def batch_chunks(chunks: List[str], batch_size: int = 4) -> List[List[str]]:
return [chunks[i:i+batch_size] for i in range(0, len(chunks), batch_size)]
def build_prompt(chunk: str) -> str:
return f"""### Unstructured Clinical Records\n\nAnalyze the clinical notes below and summarize with:\n- Diagnostic Patterns\n- Medication Issues\n- Missed Opportunities\n- Inconsistencies\n- Follow-up Recommendations\n\n---\n\n{chunk}\n\n---\nRespond concisely in bullet points with clinical reasoning."""
def init_agent() -> TxAgent:
tool_path = os.path.join(tool_cache_dir, "new_tool.json")
if not os.path.exists(tool_path):
shutil.copy(os.path.abspath("data/new_tool.json"), tool_path)
agent = TxAgent(
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
tool_files_dict={"new_tool": tool_path},
force_finish=True,
enable_checker=True,
step_rag_num=4,
seed=100
)
agent.init_model()
return agent
def analyze_batch(agent, batch: List[str]) -> str:
prompt = "\n\n".join(build_prompt(chunk) for chunk in batch)
response = ""
try:
for r in agent.run_gradio_chat(
message=prompt,
history=[],
temperature=0.0,
max_new_tokens=MAX_NEW_TOKENS,
max_token=MAX_MODEL_TOKENS,
call_agent=False,
conversation=[]
):
if isinstance(r, str):
response += r
elif isinstance(r, list):
for m in r:
if hasattr(m, "content"):
response += m.content
elif hasattr(r, "content"):
response += r.content
except Exception as e:
return f"❌ Error in batch: {str(e)}"
finally:
torch.cuda.empty_cache()
gc.collect()
return clean_response(response)
def analyze_batches_parallel(agent, batches: List[List[str]]) -> List[str]:
results = []
with ThreadPoolExecutor(max_workers=MAX_WORKERS) as executor:
futures = [executor.submit(analyze_batch, agent, batch) for batch in batches]
for future in as_completed(futures):
results.append(future.result())
return results
def generate_final_summary(agent, combined: str) -> str:
final_prompt = f"""Provide a structured medical report based on the following summaries:\n\n{combined}\n\nRespond in detailed medical bullet points."""
full_report = ""
for r in agent.run_gradio_chat(
message=final_prompt,
history=[],
temperature=0.0,
max_new_tokens=MAX_NEW_TOKENS,
max_token=MAX_MODEL_TOKENS,
call_agent=False,
conversation=[]
):
if isinstance(r, str):
full_report += r
elif isinstance(r, list):
for m in r:
if hasattr(m, "content"):
full_report += m.content
elif hasattr(r, "content"):
full_report += r.content
return clean_response(full_report)
def process_report(agent, file, messages: List[Dict[str, str]]) -> Tuple[List[Dict[str, str]], Union[str, None]]:
if not file or not hasattr(file, "name"):
messages.append({"role": "assistant", "content": "❌ Please upload a valid Excel file."})
return messages, None
messages.append({"role": "user", "content": f"πŸ“‚ Processing file: {os.path.basename(file.name)}"})
try:
extracted = extract_text_from_excel(file.name)
chunks = split_text(extracted)
batches = batch_chunks(chunks, batch_size=BATCH_SIZE)
messages.append({"role": "assistant", "content": f"πŸ” Split into {len(batches)} batches. Analyzing in parallel..."})
batch_results = analyze_batches_parallel(agent, batches)
valid = [res for res in batch_results if not res.startswith("❌")]
if not valid:
messages.append({"role": "assistant", "content": "❌ No valid batch outputs."})
return messages, None
summary = generate_final_summary(agent, "\n\n".join(valid))
report_path = os.path.join(report_dir, f"report_{datetime.now().strftime('%Y%m%d_%H%M%S')}.md")
with open(report_path, 'w', encoding='utf-8') as f:
f.write(f"# 🧠 Final Medical Report\n\n{summary}")
messages.append({"role": "assistant", "content": f"πŸ“Š Final Report:\n\n{summary}"})
messages.append({"role": "assistant", "content": f"βœ… Report saved: {os.path.basename(report_path)}"})
return messages, report_path
except Exception as e:
messages.append({"role": "assistant", "content": f"❌ Error: {str(e)}"})
return messages, None
def create_ui(agent):
with gr.Blocks(css="""
html, body, .gradio-container {background-color: #0e1621; color: #e0e0e0; font-family: 'Inter', sans-serif;}
h2, h3, h4 {color: #89b4fa; font-weight: 600;}
button.gr-button-primary {background-color: #007bff !important; color: white !important;}
.gr-chatbot, .gr-markdown, .gr-file-upload {border-radius: 16px; background-color: #1b2533;}
.gr-chatbot .message {font-size: 16px; padding: 12px; border-radius: 18px;}
.gr-chatbot .message.user {background-color: #334155;}
.gr-chatbot .message.assistant {background-color: #1e293b;}
""") as demo:
gr.Markdown("""<h2>πŸ“„ CPS: Clinical Patient Support System</h2><p>Upload a file and analyze medical notes.</p>""")
with gr.Column():
chatbot = gr.Chatbot(label="CPS Assistant", height=700, type="messages")
upload = gr.File(label="Upload Medical File", file_types=[".xlsx"])
analyze = gr.Button("🧠 Analyze", variant="primary")
download = gr.File(label="Download Report", visible=False, interactive=False)
state = gr.State(value=[])
def handle_analysis(file, chat):
messages, report_path = process_report(agent, file, chat)
return messages, gr.update(visible=bool(report_path), value=report_path), messages
analyze.click(fn=handle_analysis, inputs=[upload, state], outputs=[chatbot, download, state])
return demo
if __name__ == "__main__":
try:
agent = init_agent()
ui = create_ui(agent)
ui.launch(server_name="0.0.0.0", server_port=7860, allowed_paths=["/data/hf_cache/reports"], share=False)
except Exception as err:
print(f"Startup failed: {err}")
sys.exit(1)