|
import sys |
|
import os |
|
import pandas as pd |
|
import pdfplumber |
|
import json |
|
import gradio as gr |
|
from typing import List, Dict, Generator, Any |
|
from concurrent.futures import ThreadPoolExecutor, as_completed |
|
import hashlib |
|
import shutil |
|
import re |
|
import psutil |
|
import subprocess |
|
import logging |
|
import torch |
|
import gc |
|
from diskcache import Cache |
|
from transformers import AutoTokenizer |
|
|
|
|
|
|
|
logging.basicConfig(level=logging.INFO) |
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
PERSISTENT_DIR = "/data/hf_cache" |
|
DIRECTORIES = { |
|
"models": os.path.join(PERSISTENT_DIR, "txagent_models"), |
|
"tools": os.path.join(PERSISTENT_DIR, "tool_cache"), |
|
"cache": os.path.join(PERSISTENT_DIR, "cache"), |
|
"reports": os.path.join(PERSISTENT_DIR, "reports"), |
|
"vllm": os.path.join(PERSISTENT_DIR, "vllm_cache") |
|
} |
|
|
|
|
|
for dir_path in DIRECTORIES.values(): |
|
os.makedirs(dir_path, exist_ok=True) |
|
|
|
|
|
os.environ.update({ |
|
"HF_HOME": DIRECTORIES["models"], |
|
"TRANSFORMERS_CACHE": DIRECTORIES["models"], |
|
"VLLM_CACHE_DIR": DIRECTORIES["vllm"], |
|
"TOKENIZERS_PARALLELISM": "false", |
|
"CUDA_LAUNCH_BLOCKING": "1" |
|
}) |
|
from txagent.txagent import TxAgent |
|
|
|
def sanitize_text(text: str) -> str: |
|
"""Clean and sanitize text input""" |
|
return text.encode("utf-8", "ignore").decode("utf-8") |
|
|
|
def get_file_hash(file_path: str) -> str: |
|
"""Generate MD5 hash of file content""" |
|
with open(file_path, "rb") as f: |
|
return hashlib.md5(f.read()).hexdigest() |
|
|
|
def log_system_resources(tag: str = "") -> None: |
|
"""Log system resource usage""" |
|
try: |
|
cpu = psutil.cpu_percent(interval=1) |
|
mem = psutil.virtual_memory() |
|
logger.info(f"[{tag}] CPU: {cpu:.1f}% | RAM: {mem.used//(1024**2)}MB/{mem.total//(1024**2)}MB") |
|
|
|
gpu_info = subprocess.run( |
|
["nvidia-smi", "--query-gpu=memory.used,memory.total,utilization.gpu", |
|
"--format=csv,nounits,noheader"], |
|
capture_output=True, text=True |
|
) |
|
if gpu_info.returncode == 0: |
|
used, total, util = gpu_info.stdout.strip().split(", ") |
|
logger.info(f"[{tag}] GPU: {used}MB/{total}MB | Util: {util}%") |
|
except Exception as e: |
|
logger.error(f"[{tag}] Resource monitoring failed: {e}") |
|
|
|
|
|
class FileProcessor: |
|
@staticmethod |
|
def extract_pdf_text(file_path: str) -> str: |
|
"""Extract text from PDF with parallel processing""" |
|
try: |
|
with pdfplumber.open(file_path) as pdf: |
|
total_pages = len(pdf.pages) |
|
if not total_pages: |
|
return "" |
|
|
|
def process_page_range(start: int, end: int) -> List[tuple]: |
|
results = [] |
|
with pdfplumber.open(file_path) as pdf: |
|
for page in pdf.pages[start:end]: |
|
page_num = start + pdf.pages.index(page) |
|
text = page.extract_text() or "" |
|
results.append((page_num, f"=== Page {page_num + 1} ===\n{text.strip()}")) |
|
return results |
|
|
|
batch_size = 10 |
|
batches = [(i, min(i+batch_size, total_pages)) for i in range(0, total_pages, batch_size)] |
|
text_chunks = [""] * total_pages |
|
|
|
with ThreadPoolExecutor(max_workers=6) as executor: |
|
futures = [executor.submit(process_page_range, start, end) for start, end in batches] |
|
for future in as_completed(futures): |
|
for page_num, text in future.result(): |
|
text_chunks[page_num] = text |
|
|
|
return "\n\n".join(filter(None, text_chunks)) |
|
except Exception as e: |
|
logger.error(f"PDF processing error: {e}") |
|
return f"PDF processing error: {str(e)}" |
|
|
|
@staticmethod |
|
def excel_to_data(file_path: str) -> List[Dict]: |
|
"""Convert Excel file to structured data""" |
|
try: |
|
df = pd.read_excel(file_path, engine='openpyxl', header=None, dtype=str) |
|
content = df.where(pd.notnull(df), "").astype(str).values.tolist() |
|
return [{"filename": os.path.basename(file_path), "rows": content, "type": "excel"}] |
|
except Exception as e: |
|
logger.error(f"Excel processing error: {e}") |
|
return [{"error": f"Excel processing error: {str(e)}"}] |
|
|
|
@staticmethod |
|
def csv_to_data(file_path: str) -> List[Dict]: |
|
"""Convert CSV file to structured data""" |
|
try: |
|
chunks = [] |
|
for chunk in pd.read_csv( |
|
file_path, header=None, dtype=str, |
|
encoding_errors='replace', on_bad_lines='skip', chunksize=10000 |
|
): |
|
chunks.append(chunk) |
|
|
|
df = pd.concat(chunks) if chunks else pd.DataFrame() |
|
content = df.where(pd.notnull(df), "").astype(str).values.tolist() |
|
return [{"filename": os.path.basename(file_path), "rows": content, "type": "csv"}] |
|
except Exception as e: |
|
logger.error(f"CSV processing error: {e}") |
|
return [{"error": f"CSV processing error: {str(e)}"}] |
|
|
|
@classmethod |
|
def process_file(cls, file_path: str, file_type: str) -> List[Dict]: |
|
"""Route file processing based on type""" |
|
processors = { |
|
"pdf": cls.extract_pdf_text, |
|
"xls": cls.excel_to_data, |
|
"xlsx": cls.excel_to_data, |
|
"csv": cls.csv_to_data |
|
} |
|
|
|
if file_type not in processors: |
|
return [{"error": f"Unsupported file type: {file_type}"}] |
|
|
|
try: |
|
result = processors[file_type](file_path) |
|
if file_type == "pdf": |
|
return [{ |
|
"filename": os.path.basename(file_path), |
|
"content": result, |
|
"status": "initial", |
|
"type": "pdf" |
|
}] |
|
return result |
|
except Exception as e: |
|
logger.error(f"Error processing {file_type} file: {e}") |
|
return [{"error": f"Error processing file: {str(e)}"}] |
|
|
|
|
|
class TextProcessor: |
|
def __init__(self): |
|
self.tokenizer = AutoTokenizer.from_pretrained("mims-harvard/TxAgent-T1-Llama-3.1-8B") |
|
self.cache = Cache(DIRECTORIES["cache"], size_limit=10*1024**3) |
|
|
|
def chunk_text(self, text: str, max_tokens: int = 1800) -> List[str]: |
|
"""Split text into token-limited chunks""" |
|
tokens = self.tokenizer.encode(text) |
|
return [ |
|
self.tokenizer.decode(tokens[i:i+max_tokens]) |
|
for i in range(0, len(tokens), max_tokens) |
|
] |
|
|
|
def clean_response(self, text: str) -> str: |
|
"""Clean and format model response""" |
|
text = sanitize_text(text) |
|
text = re.sub( |
|
r"\[.*?\]|\bNone\b|To analyze the patient record excerpt.*?medications\." |
|
r"|Since the previous attempts.*?\.|I need to.*?medications\." |
|
r"|Retrieving tools.*?\.", "", text, flags=re.DOTALL |
|
) |
|
|
|
diagnoses = [] |
|
in_diagnoses = False |
|
|
|
for line in text.splitlines(): |
|
line = line.strip() |
|
if not line: |
|
continue |
|
if re.match(r"###\s*Missed Diagnoses", line): |
|
in_diagnoses = True |
|
continue |
|
if re.match(r"###\s*(Medication Conflicts|Incomplete Assessments|Urgent Follow-up)", line): |
|
in_diagnoses = False |
|
continue |
|
if in_diagnoses and re.match(r"-\s*.+", line): |
|
diagnosis = re.sub(r"^\-\s*", "", line).strip() |
|
if diagnosis and not re.match(r"No issues identified", diagnosis, re.IGNORECASE): |
|
diagnoses.append(diagnosis) |
|
|
|
return " ".join(diagnoses) if diagnoses else "" |
|
|
|
def summarize_results(self, analysis: str) -> str: |
|
"""Generate concise summary from full analysis""" |
|
chunks = analysis.split("--- Analysis for Chunk") |
|
diagnoses = [] |
|
|
|
for chunk in chunks: |
|
chunk = chunk.strip() |
|
if not chunk or "No oversights identified" in chunk: |
|
continue |
|
|
|
in_diagnoses = False |
|
for line in chunk.splitlines(): |
|
line = line.strip() |
|
if not line: |
|
continue |
|
if re.match(r"###\s*Missed Diagnoses", line): |
|
in_diagnoses = True |
|
continue |
|
if re.match(r"###\s*(Medication Conflicts|Incomplete Assessments|Urgent Follow-up)", line): |
|
in_diagnoses = False |
|
continue |
|
if in_diagnoses and re.match(r"-\s*.+", line): |
|
diagnosis = re.sub(r"^\-\s*", "", line).strip() |
|
if diagnosis and not re.match(r"No issues identified", diagnosis, re.IGNORECASE): |
|
diagnoses.append(diagnosis) |
|
|
|
unique_diagnoses = list(dict.fromkeys(diagnoses)) |
|
|
|
if not unique_diagnoses: |
|
return "No missed diagnoses were identified in the provided records." |
|
|
|
if len(unique_diagnoses) > 1: |
|
summary = "Missed diagnoses include " + ", ".join(unique_diagnoses[:-1]) |
|
summary += f", and {unique_diagnoses[-1]}" |
|
else: |
|
summary = "Missed diagnoses include " + unique_diagnoses[0] |
|
|
|
return summary + ", all requiring urgent clinical review." |
|
|
|
|
|
class ClinicalOversightApp: |
|
def __init__(self): |
|
self.agent = self._initialize_agent() |
|
self.text_processor = TextProcessor() |
|
self.file_processor = FileProcessor() |
|
|
|
def _initialize_agent(self): |
|
"""Initialize the TxAgent with proper configuration""" |
|
logger.info("Initializing AI model...") |
|
log_system_resources("Before Load") |
|
|
|
tool_path = os.path.join(DIRECTORIES["tools"], "new_tool.json") |
|
if not os.path.exists(tool_path): |
|
default_tools = os.path.abspath("data/new_tool.json") |
|
shutil.copy(default_tools, tool_path) |
|
|
|
agent = TxAgent( |
|
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B", |
|
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B", |
|
tool_files_dict={"new_tool": tool_path}, |
|
force_finish=True, |
|
enable_checker=False, |
|
step_rag_num=4, |
|
seed=100, |
|
additional_default_tools=[], |
|
) |
|
agent.init_model() |
|
|
|
log_system_resources("After Load") |
|
logger.info("AI Agent Ready") |
|
return agent |
|
|
|
def process_response_stream(self, prompt: str, history: List[dict]) -> Generator[dict, None, None]: |
|
"""Stream the agent's response with proper formatting""" |
|
full_response = "" |
|
for chunk in self.agent.run_gradio_chat(prompt, [], 0.2, 512, 2048, False, []): |
|
if not chunk: |
|
continue |
|
|
|
if isinstance(chunk, list): |
|
for message in chunk: |
|
if hasattr(message, 'content') and message.content: |
|
cleaned = self.text_processor.clean_response(message.content) |
|
if cleaned: |
|
full_response += cleaned + " " |
|
yield {"role": "assistant", "content": full_response} |
|
elif isinstance(chunk, str) and chunk.strip(): |
|
cleaned = self.text_processor.clean_response(chunk) |
|
if cleaned: |
|
full_response += cleaned + " " |
|
yield {"role": "assistant", "content": full_response} |
|
|
|
def analyze(self, message: str, history: List[dict], files: List) -> Generator[Dict[str, Any], None, None]: |
|
"""Main analysis pipeline with proper output formatting""" |
|
|
|
outputs = { |
|
"chatbot": history.copy(), |
|
"download_output": None, |
|
"final_summary": "", |
|
"progress_text": {"value": "Starting analysis...", "visible": True} |
|
} |
|
yield outputs |
|
|
|
try: |
|
|
|
history.append({"role": "user", "content": message}) |
|
outputs["chatbot"] = history |
|
yield outputs |
|
|
|
|
|
extracted = [] |
|
file_hash_value = "" |
|
|
|
if files: |
|
with ThreadPoolExecutor(max_workers=4) as executor: |
|
futures = [] |
|
for f in files: |
|
file_type = f.name.split(".")[-1].lower() |
|
futures.append(executor.submit(self.file_processor.process_file, f.name, file_type)) |
|
|
|
for i, future in enumerate(as_completed(futures), 1): |
|
try: |
|
extracted.extend(future.result()) |
|
outputs["progress_text"] = self._update_progress(i, len(files), "Processing files") |
|
yield outputs |
|
except Exception as e: |
|
logger.error(f"File processing error: {e}") |
|
extracted.append({"error": f"Error processing file: {str(e)}"}) |
|
|
|
file_hash_value = get_file_hash(files[0].name) if files else "" |
|
history.append({"role": "assistant", "content": "✅ File processing complete"}) |
|
outputs.update({ |
|
"chatbot": history, |
|
"progress_text": self._update_progress(len(files), len(files), "Files processed") |
|
}) |
|
yield outputs |
|
|
|
|
|
text_content = "\n".join(json.dumps(item) for item in extracted) |
|
chunks = self.text_processor.chunk_text(text_content) |
|
combined_response = "" |
|
|
|
for chunk_idx, chunk in enumerate(chunks, 1): |
|
prompt = f""" |
|
Analyze this patient record for missed diagnoses. Provide a concise, evidence-based summary |
|
as a single paragraph without headings or bullet points. Include specific clinical findings |
|
with their potential implications and urgent review recommendations. If no missed diagnoses |
|
are found, state 'No missed diagnoses identified'. |
|
|
|
Patient Record (Chunk {chunk_idx}/{len(chunks)}): |
|
{chunk[:1800]} |
|
""" |
|
history.append({"role": "assistant", "content": ""}) |
|
outputs.update({ |
|
"chatbot": history, |
|
"progress_text": self._update_progress(chunk_idx, len(chunks), "Analyzing") |
|
}) |
|
yield outputs |
|
|
|
|
|
chunk_response = "" |
|
for update in self.process_response_stream(prompt, history): |
|
history[-1] = update |
|
chunk_response = update["content"] |
|
outputs.update({ |
|
"chatbot": history, |
|
"progress_text": self._update_progress(chunk_idx, len(chunks), "Analyzing") |
|
}) |
|
yield outputs |
|
|
|
combined_response += f"--- Analysis for Chunk {chunk_idx} ---\n{chunk_response}\n" |
|
torch.cuda.empty_cache() |
|
gc.collect() |
|
|
|
|
|
summary = self.text_processor.summarize_results(combined_response) |
|
report_path = os.path.join(DIRECTORIES["reports"], f"{file_hash_value}_report.txt") if file_hash_value else None |
|
|
|
if report_path: |
|
with open(report_path, "w", encoding="utf-8") as f: |
|
f.write(combined_response + "\n\n" + summary) |
|
|
|
outputs.update({ |
|
"download_output": report_path if report_path else None, |
|
"final_summary": summary, |
|
"progress_text": {"visible": False} |
|
}) |
|
yield outputs |
|
|
|
except Exception as e: |
|
logger.error(f"Analysis error: {e}") |
|
history.append({"role": "assistant", "content": f"❌ Error: {str(e)}"}) |
|
outputs.update({ |
|
"chatbot": history, |
|
"final_summary": f"Error occurred: {str(e)}", |
|
"progress_text": {"visible": False} |
|
}) |
|
yield outputs |
|
|
|
def _update_progress(self, current: int, total: int, stage: str = "") -> Dict[str, Any]: |
|
"""Format progress update for UI""" |
|
progress = f"{stage} - {current}/{total}" if stage else f"{current}/{total}" |
|
return {"value": progress, "visible": True, "label": f"Progress: {progress}"} |
|
|
|
def create_interface(self): |
|
"""Create Gradio interface with improved layout""" |
|
with gr.Blocks( |
|
theme=gr.themes.Soft( |
|
primary_hue="indigo", |
|
secondary_hue="blue", |
|
neutral_hue="slate" |
|
), |
|
title="Clinical Oversight Assistant", |
|
css=""" |
|
.diagnosis-summary { |
|
border-left: 4px solid #4f46e5; |
|
padding: 12px; |
|
background: #f8fafc; |
|
border-radius: 4px; |
|
} |
|
.file-upload { |
|
border: 2px dashed #cbd5e1; |
|
border-radius: 8px; |
|
padding: 20px; |
|
} |
|
""" |
|
) as app: |
|
|
|
gr.Markdown(""" |
|
<div style='text-align: center; margin-bottom: 20px;'> |
|
<h1 style='color: #4f46e5;'>🩺 Clinical Oversight Assistant</h1> |
|
<p style='color: #64748b;'> |
|
AI-powered analysis of patient records for potential missed diagnoses |
|
</p> |
|
</div> |
|
""") |
|
|
|
with gr.Row(equal_height=False): |
|
|
|
with gr.Column(scale=3): |
|
chatbot = gr.Chatbot( |
|
label="Clinical Analysis", |
|
height=600, |
|
show_copy_button=True, |
|
avatar_images=( |
|
"assets/user.png", |
|
"assets/assistant.png" |
|
) if os.path.exists("assets/user.png") else None, |
|
bubble_full_width=False, |
|
type="messages", |
|
elem_classes=["chat-container"] |
|
) |
|
|
|
|
|
with gr.Column(scale=1): |
|
with gr.Group(): |
|
gr.Markdown("### 📝 Summary of Findings") |
|
final_summary = gr.Markdown( |
|
"Analysis results will appear here...", |
|
elem_classes=["diagnosis-summary"] |
|
) |
|
|
|
with gr.Group(): |
|
gr.Markdown("### 📂 Report Download") |
|
download_output = gr.File( |
|
label="Full Report", |
|
visible=False, |
|
interactive=False |
|
) |
|
|
|
|
|
with gr.Row(): |
|
file_upload = gr.File( |
|
file_types=[".pdf", ".csv", ".xls", ".xlsx"], |
|
file_count="multiple", |
|
label="Upload Patient Records", |
|
elem_classes=["file-upload"] |
|
) |
|
|
|
|
|
with gr.Row(): |
|
msg_input = gr.Textbox( |
|
placeholder="Ask about potential oversights or upload files...", |
|
show_label=False, |
|
container=False, |
|
scale=7, |
|
autofocus=True |
|
) |
|
send_btn = gr.Button( |
|
"Analyze", |
|
variant="primary", |
|
scale=1, |
|
min_width=100 |
|
) |
|
|
|
|
|
progress_text = gr.Textbox( |
|
label="Progress Status", |
|
visible=False, |
|
interactive=False |
|
) |
|
|
|
|
|
send_btn.click( |
|
self.analyze, |
|
inputs=[msg_input, chatbot, file_upload], |
|
outputs=[chatbot, download_output, final_summary, progress_text], |
|
show_progress="hidden" |
|
) |
|
|
|
msg_input.submit( |
|
self.analyze, |
|
inputs=[msg_input, chatbot, file_upload], |
|
outputs=[chatbot, download_output, final_summary, progress_text], |
|
show_progress="hidden" |
|
) |
|
|
|
app.load( |
|
lambda: [ |
|
[], None, "", "", None, {"visible": False} |
|
], |
|
outputs=[chatbot, download_output, final_summary, msg_input, file_upload, progress_text], |
|
queue=False |
|
) |
|
|
|
return app |
|
|
|
|
|
if __name__ == "__main__": |
|
try: |
|
logger.info("Starting Clinical Oversight Assistant...") |
|
app = ClinicalOversightApp() |
|
interface = app.create_interface() |
|
|
|
interface.queue( |
|
api_open=False, |
|
max_size=20 |
|
).launch( |
|
server_name="0.0.0.0", |
|
server_port=7860, |
|
show_error=True, |
|
allowed_paths=[DIRECTORIES["reports"]], |
|
share=False |
|
) |
|
except Exception as e: |
|
logger.error(f"Application failed to start: {e}") |
|
raise |
|
finally: |
|
if torch.distributed.is_initialized(): |
|
torch.distributed.destroy_process_group() |