CPS-Test-Mobile / app.py
Ali2206's picture
Update app.py
78b3332 verified
raw
history blame
18.1 kB
import sys
import os
import pandas as pd
import pdfplumber
import json
import gradio as gr
from typing import List, Tuple, Optional, Generator
from concurrent.futures import ThreadPoolExecutor, as_completed
import hashlib
import shutil
import re
import psutil
import subprocess
import logging
import torch
import gc
from diskcache import Cache
import time
import pyarrow as pa
import pyarrow.parquet as pq
import pyarrow.csv as pc
import numpy as np
from functools import partial
from itertools import islice
import io
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Persistent directory
persistent_dir = "/data/hf_cache"
os.makedirs(persistent_dir, exist_ok=True)
model_cache_dir = os.path.join(persistent_dir, "txagent_models")
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
file_cache_dir = os.path.join(persistent_dir, "cache")
report_dir = os.path.join(persistent_dir, "reports")
vllm_cache_dir = os.path.join(persistent_dir, "vllm_cache")
for directory in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir, vllm_cache_dir]:
os.makedirs(directory, exist_ok=True)
os.environ["HF_HOME"] = model_cache_dir
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir
os.environ["VLLM_CACHE_DIR"] = vllm_cache_dir
os.environ["TOKENIZERS_PARALLELISM"] = "false"
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
current_dir = os.path.dirname(os.path.abspath(__file__))
src_path = os.path.abspath(os.path.join(current_dir, "src"))
sys.path.insert(0, src_path)
from txagent.txagent import TxAgent
# Initialize cache with 10GB limit
cache = Cache(file_cache_dir, size_limit=10 * 1024**3)
def sanitize_utf8(text: str) -> str:
return text.encode("utf-8", "ignore").decode("utf-8")
def file_hash(path: str) -> str:
with open(path, "rb") as f:
return hashlib.md5(f.read()).hexdigest()
def extract_all_pages(file_path: str, progress_callback=None) -> str:
try:
with pdfplumber.open(file_path) as pdf:
total_pages = len(pdf.pages)
if total_pages == 0:
return ""
batch_size = 10
batches = [(i, min(i + batch_size, total_pages)) for i in range(0, total_pages, batch_size)]
text_chunks = [""] * total_pages
processed_pages = 0
def extract_batch(start: int, end: int) -> List[tuple]:
results = []
with pdfplumber.open(file_path) as pdf:
for page in pdf.pages[start:end]:
page_num = start + pdf.pages.index(page)
page_text = page.extract_text() or ""
results.append((page_num, f"=== Page {page_num + 1} ===\n{page_text.strip()}"))
return results
with ThreadPoolExecutor(max_workers=6) as executor:
futures = [executor.submit(extract_batch, start, end) for start, end in batches]
for future in as_completed(futures):
for page_num, text in future.result():
text_chunks[page_num] = text
processed_pages += batch_size
if progress_callback:
progress_callback(min(processed_pages, total_pages), total_pages)
return "\n\n".join(filter(None, text_chunks))
except Exception as e:
logger.error("PDF processing error: %s", e)
return f"PDF processing error: {str(e)}"
def excel_to_ndjson(file_path: str) -> Generator[str, None, None]:
"""Stream Excel file as NDJSON for maximum performance"""
try:
# Use openpyxl in streaming mode
with pd.ExcelFile(file_path, engine='openpyxl') as xls:
for sheet_name in xls.sheet_names:
for chunk in pd.read_excel(
xls,
sheet_name=sheet_name,
header=None,
dtype=str,
chunksize=1000
):
for _, row in chunk.iterrows():
yield json.dumps({
"sheet": sheet_name,
"row": row.fillna("").astype(str).tolist()
}) + "\n"
except Exception as e:
logger.error(f"Error streaming Excel: {e}")
raise
def csv_to_ndjson(file_path: str) -> Generator[str, None, None]:
"""Stream CSV file as NDJSON for maximum performance"""
try:
for chunk in pd.read_csv(
file_path,
header=None,
dtype=str,
chunksize=1000,
encoding_errors='replace',
on_bad_lines='skip'
):
for _, row in chunk.iterrows():
yield json.dumps({
"row": row.fillna("").astype(str).tolist()
}) + "\n"
except Exception as e:
logger.error(f"Error streaming CSV: {e}")
raise
def stream_file_to_json(file_path: str, file_type: str) -> Generator[str, None, None]:
"""Stream file content as JSON chunks"""
try:
if file_type == "pdf":
text = extract_all_pages(file_path)
yield json.dumps({
"filename": os.path.basename(file_path),
"content": text,
"status": "initial"
})
elif file_type in ["csv", "xls", "xlsx"]:
# Stream the file content
yield json.dumps({
"filename": os.path.basename(file_path),
"streaming": True,
"type": file_type
})
if file_type == "csv":
stream_gen = csv_to_ndjson(file_path)
else:
stream_gen = excel_to_ndjson(file_path)
for chunk in stream_gen:
yield chunk
else:
yield json.dumps({"error": f"Unsupported file type: {file_type}"})
except Exception as e:
logger.error("Error processing %s: %s", os.path.basename(file_path), e)
yield json.dumps({"error": f"Error processing {os.path.basename(file_path)}: {str(e)}"})
def log_system_usage(tag=""):
try:
cpu = psutil.cpu_percent(interval=1)
mem = psutil.virtual_memory()
logger.info("[%s] CPU: %.1f%% | RAM: %dMB / %dMB", tag, cpu, mem.used // (1024**2), mem.total // (1024**2))
result = subprocess.run(
["nvidia-smi", "--query-gpu=memory.used,memory.total,utilization.gpu", "--format=csv,nounits,noheader"],
capture_output=True, text=True
)
if result.returncode == 0:
used, total, util = result.stdout.strip().split(", ")
logger.info("[%s] GPU: %sMB / %sMB | Utilization: %s%%", tag, used, total, util)
except Exception as e:
logger.error("[%s] GPU/CPU monitor failed: %s", tag, e)
def clean_response(text: str) -> str:
text = sanitize_utf8(text)
text = re.sub(r"\[.*?\]|\bNone\b|To analyze the patient record excerpt.*?medications\.|Since the previous attempts.*?\.|I need to.*?medications\.|Retrieving tools.*?\.", "", text, flags=re.DOTALL)
diagnoses = []
lines = text.splitlines()
in_diagnoses_section = False
for line in lines:
line = line.strip()
if not line:
continue
if re.match(r"###\s*Missed Diagnoses", line):
in_diagnoses_section = True
continue
if re.match(r"###\s*(Medication Conflicts|Incomplete Assessments|Urgent Follow-up)", line):
in_diagnoses_section = False
continue
if in_diagnoses_section and re.match(r"-\s*.+", line):
diagnosis = re.sub(r"^\-\s*", "", line).strip()
if diagnosis and not re.match(r"No issues identified", diagnosis, re.IGNORECASE):
diagnoses.append(diagnosis)
text = " ".join(diagnoses)
text = re.sub(r"\s+", " ", text).strip()
text = re.sub(r"[^\w\s\.\,\(\)\-]", "", text)
return text if text else ""
def summarize_findings(combined_response: str) -> str:
chunks = combined_response.split("--- Analysis for Chunk")
diagnoses = []
for chunk in chunks:
chunk = chunk.strip()
if not chunk or "No oversights identified" in chunk:
continue
lines = chunk.splitlines()
in_diagnoses_section = False
for line in lines:
line = line.strip()
if not line:
continue
if re.match(r"###\s*Missed Diagnoses", line):
in_diagnoses_section = True
continue
if re.match(r"###\s*(Medication Conflicts|Incomplete Assessments|Urgent Follow-up)", line):
in_diagnoses_section = False
continue
if in_diagnoses_section and re.match(r"-\s*.+", line):
diagnosis = re.sub(r"^\-\s*", "", line).strip()
if diagnosis and not re.match(r"No issues identified", diagnosis, re.IGNORECASE):
diagnoses.append(diagnosis)
seen = set()
unique_diagnoses = [d for d in diagnoses if not (d in seen or seen.add(d))]
if not unique_diagnoses:
return "No missed diagnoses were identified in the provided records."
summary = "Missed diagnoses include " + ", ".join(unique_diagnoses[:-1])
if len(unique_diagnoses) > 1:
summary += f", and {unique_diagnoses[-1]}"
elif len(unique_diagnoses) == 1:
summary = "Missed diagnoses include " + unique_diagnoses[0]
summary += ", all of which require urgent clinical review to prevent potential adverse outcomes."
return summary.strip()
def init_agent():
logger.info("Initializing model...")
log_system_usage("Before Load")
default_tool_path = os.path.abspath("data/new_tool.json")
target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
if not os.path.exists(target_tool_path):
shutil.copy(default_tool_path, target_tool_path)
agent = TxAgent(
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
tool_files_dict={"new_tool": target_tool_path},
force_finish=True,
enable_checker=False,
step_rag_num=4,
seed=100,
additional_default_tools=[],
)
agent.init_model()
log_system_usage("After Load")
logger.info("Agent Ready")
return agent
def batched(iterable, n):
"""Batch data into tuples of length n. The last batch may be shorter."""
it = iter(iterable)
while True:
batch = list(islice(it, n))
if not batch:
return
yield batch
def create_ui(agent):
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("<h1 style='text-align: center;'>🩺 Clinical Oversight Assistant</h1>")
chatbot = gr.Chatbot(label="Detailed Analysis", height=600, type="messages")
final_summary = gr.Markdown(label="Summary of Missed Diagnoses")
file_upload = gr.File(file_types=[".pdf", ".csv", ".xls", ".xlsx"], file_count="multiple")
msg_input = gr.Textbox(placeholder="Ask about potential oversights...", show_label=False)
send_btn = gr.Button("Analyze", variant="primary")
download_output = gr.File(label="Download Full Report")
progress_bar = gr.Progress()
prompt_template = """
Analyze the patient record excerpt for missed diagnoses only. Provide a concise, evidence-based summary as a single paragraph without headings or bullet points. Include specific clinical findings (e.g., 'elevated blood pressure (160/95) on page 10'), their potential implications (e.g., 'may indicate untreated hypertension'), and a recommendation for urgent review. Do not include other oversight categories like medication conflicts. If no missed diagnoses are found, state 'No missed diagnoses identified' in a single sentence.
Patient Record Excerpt (Chunk {0} of {1}):
{chunk}
"""
def analyze(message: str, history: List[dict], files: List, progress=gr.Progress()):
history.append({"role": "user", "content": message})
yield history, None, ""
extracted = []
file_hash_value = ""
if files:
# Process files in parallel with streaming
with ThreadPoolExecutor(max_workers=4) as executor:
futures = []
for f in files:
file_type = f.name.split(".")[-1].lower()
futures.append(executor.submit(
lambda f: list(stream_file_to_json(f.name, file_type)),
f
))
for future in as_completed(futures):
try:
extracted.extend(future.result())
except Exception as e:
logger.error(f"File processing error: {e}")
extracted.append(json.dumps({
"error": f"Error processing file: {str(e)}"
}))
file_hash_value = file_hash(files[0].name) if files else ""
history.append({"role": "assistant", "content": "✅ File processing complete"})
yield history, None, ""
# Process chunks in parallel with dynamic batching
chunk_size = 8000 # Larger chunks reduce overhead
combined_response = ""
try:
# Convert extracted data to text chunks
text_content = "\n".join(extracted)
chunks = [text_content[i:i+chunk_size] for i in range(0, len(text_content), chunk_size)]
# Process chunks in parallel batches
batch_size = 4 # Optimal for most GPUs
total_chunks = len(chunks)
for batch_idx, batch_chunks in enumerate(batched(chunks, batch_size)):
batch_prompts = [
prompt_template.format(
batch_idx * batch_size + i + 1,
total_chunks,
chunk=chunk[:6000] # Slightly larger context
)
for i, chunk in enumerate(batch_chunks)
]
progress((batch_idx * batch_size) / total_chunks,
desc=f"Analyzing batch {batch_idx + 1}/{(total_chunks + batch_size - 1) // batch_size}")
# Process batch in parallel
with ThreadPoolExecutor(max_workers=len(batch_prompts)) as executor:
future_to_prompt = {
executor.submit(
agent.run_gradio_chat,
prompt, [], 0.2, 512, 2048, False, []
): prompt
for prompt in batch_prompts
}
for future in as_completed(future_to_prompt):
chunk_response = ""
for chunk_output in future.result():
if chunk_output is None:
continue
if isinstance(chunk_output, list):
for m in chunk_output:
if hasattr(m, 'content') and m.content:
cleaned = clean_response(m.content)
if cleaned:
chunk_response += cleaned + " "
elif isinstance(chunk_output, str) and chunk_output.strip():
cleaned = clean_response(chunk_output)
if cleaned:
chunk_response += cleaned + " "
combined_response += f"--- Analysis for Chunk {batch_idx * batch_size + 1} ---\n{chunk_response.strip()}\n"
history[-1] = {"role": "assistant", "content": combined_response.strip()}
yield history, None, ""
# Clean up memory
torch.cuda.empty_cache()
gc.collect()
# Generate final summary
summary = summarize_findings(combined_response)
report_path = os.path.join(report_dir, f"{file_hash_value}_report.txt") if file_hash_value else None
if report_path:
with open(report_path, "w", encoding="utf-8") as f:
f.write(combined_response + "\n\n" + summary)
yield history, report_path if report_path and os.path.exists(report_path) else None, summary
except Exception as e:
logger.error("Analysis error: %s", e)
history.append({"role": "assistant", "content": f"❌ Error occurred: {str(e)}"})
yield history, None, f"Error occurred during analysis: {str(e)}"
send_btn.click(analyze, inputs=[msg_input, gr.State([]), file_upload], outputs=[chatbot, download_output, final_summary])
msg_input.submit(analyze, inputs=[msg_input, gr.State([]), file_upload], outputs=[chatbot, download_output, final_summary])
return demo
if __name__ == "__main__":
try:
logger.info("Launching app...")
agent = init_agent()
demo = create_ui(agent)
demo.queue(api_open=False).launch(
server_name="0.0.0.0",
server_port=7860,
show_error=True,
allowed_paths=[report_dir],
share=False
)
finally:
if torch.distributed.is_initialized():
torch.distributed.destroy_process_group()