File size: 26,313 Bytes
f394b25 94b553f 7f5790c 94b553f 02ebb35 94b553f f394b25 55e3db0 f394b25 94b553f f394b25 94b553f f394b25 94b553f f394b25 94b553f f394b25 94b553f f394b25 94b553f f394b25 94b553f f394b25 94b553f f394b25 55e3db0 f394b25 94b553f f394b25 94b553f f394b25 94b553f f394b25 94b553f f394b25 94b553f f394b25 94b553f 55e3db0 f394b25 94b553f f394b25 94b553f f394b25 94b553f f394b25 94b553f f394b25 94b553f f394b25 94b553f f394b25 94b553f f394b25 94b553f f394b25 94b553f f394b25 94b553f 55e3db0 f394b25 94b553f f394b25 94b553f 55e3db0 94b553f ba63eca f394b25 94b553f f394b25 94b553f f394b25 94b553f f394b25 94b553f f394b25 94b553f f394b25 94b553f f394b25 94b553f f394b25 94b553f f394b25 94b553f f394b25 94b553f f394b25 94b553f f394b25 94b553f f394b25 55e3db0 f394b25 55e3db0 f394b25 55e3db0 f394b25 55e3db0 f394b25 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 |
import sys
import os
import pandas as pd
import pdfplumber
import json
import gradio as gr
from typing import List, Dict, Generator, Any
from concurrent.futures import ThreadPoolExecutor, as_completed
import hashlib
import shutil
import re
import psutil
import subprocess
import logging
import torch
import gc
from diskcache import Cache
from transformers import AutoTokenizer
# ==================== CONFIGURATION ====================
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Setup directories
PERSISTENT_DIR = "/data/hf_cache"
DIRECTORIES = {
"models": os.path.join(PERSISTENT_DIR, "txagent_models"),
"tools": os.path.join(PERSISTENT_DIR, "tool_cache"),
"cache": os.path.join(PERSISTENT_DIR, "cache"),
"reports": os.path.join(PERSISTENT_DIR, "reports"),
"vllm": os.path.join(PERSISTENT_DIR, "vllm_cache")
}
# Create directories
for dir_path in DIRECTORIES.values():
os.makedirs(dir_path, exist_ok=True)
# Environment variables
os.environ.update({
"HF_HOME": DIRECTORIES["models"],
"TRANSFORMERS_CACHE": DIRECTORIES["models"],
"VLLM_CACHE_DIR": DIRECTORIES["vllm"],
"TOKENIZERS_PARALLELISM": "false",
"CUDA_LAUNCH_BLOCKING": "1"
})
# Add src path for txagent
current_dir = os.path.dirname(os.path.abspath(__file__))
src_path = os.path.abspath(os.path.join(current_dir, "src"))
sys.path.insert(0, src_path)
from txagent.txagent import TxAgent
# ==================== UTILITY FUNCTIONS ====================
def sanitize_text(text: str) -> str:
"""Clean and sanitize text input"""
return text.encode("utf-8", "ignore").decode("utf-8")
def get_file_hash(file_path: str) -> str:
"""Generate MD5 hash of file content"""
with open(file_path, "rb") as f:
return hashlib.md5(f.read()).hexdigest()
def log_system_resources(tag: str = "") -> None:
"""Log system resource usage"""
try:
cpu = psutil.cpu_percent(interval=1)
mem = psutil.virtual_memory()
logger.info(f"[{tag}] CPU: {cpu:.1f}% | RAM: {mem.used//(1024**2)}MB/{mem.total//(1024**2)}MB")
gpu_info = subprocess.run(
["nvidia-smi", "--query-gpu=memory.used,memory.total,utilization.gpu",
"--format=csv,nounits,noheader"],
capture_output=True, text=True
)
if gpu_info.returncode == 0:
used, total, util = gpu_info.stdout.strip().split(", ")
logger.info(f"[{tag}] GPU: {used}MB/{total}MB | Util: {util}%")
except Exception as e:
logger.error(f"[{tag}] Resource monitoring failed: {e}")
# ==================== FILE PROCESSING ====================
class FileProcessor:
@staticmethod
def extract_pdf_text(file_path: str, cache: Cache) -> str:
"""Extract text from PDF with caching"""
cache_key = f"pdf_{get_file_hash(file_path)}"
if cache_key in cache:
return cache[cache_key]
try:
with pdfplumber.open(file_path) as pdf:
total_pages = len(pdf.pages)
if not total_pages:
return ""
def process_page_range(start: int, end: int) -> List[tuple]:
results = []
with pdfplumber.open(file_path) as pdf:
for page in pdf.pages[start:end]:
page_num = start + pdf.pages.index(page)
text = page.extract_text() or ""
results.append((page_num, f"=== Page {page_num + 1} ===\n{text.strip()}"))
return results
batch_size = 10
batches = [(i, min(i+batch_size, total_pages)) for i in range(0, total_pages, batch_size)]
text_chunks = [""] * total_pages
with ThreadPoolExecutor(max_workers=2) as executor:
futures = [executor.submit(process_page_range, start, end) for start, end in batches]
for future in as_completed(futures):
for page_num, text in future.result():
text_chunks[page_num] = text
result = "\n\n".join(filter(None, text_chunks))
cache[cache_key] = result
return result
except Exception as e:
logger.error(f"PDF processing error: {e}")
return f"PDF processing error: {str(e)}"
@staticmethod
def excel_to_data(file_path: str, cache: Cache) -> List[Dict]:
"""Convert Excel file to structured data with caching"""
cache_key = f"excel_{get_file_hash(file_path)}"
if cache_key in cache:
return cache[cache_key]
try:
df = pd.read_excel(file_path, engine='openpyxl', header=None, dtype=str)
content = df.where(pd.notnull(df), "").astype(str).values.tolist()
result = [{"filename": os.path.basename(file_path), "rows": content, "type": "excel"}]
cache[cache_key] = result
return result
except Exception as e:
logger.error(f"Excel processing error: {e}")
return [{"error": f"Excel processing error: {str(e)}"}]
@staticmethod
def csv_to_data(file_path: str, cache: Cache) -> List[Dict]:
"""Convert CSV file to structured data with caching"""
cache_key = f"csv_{get_file_hash(file_path)}"
if cache_key in cache:
return cache[cache_key]
try:
chunks = []
for chunk in pd.read_csv(
file_path, header=None, dtype=str,
encoding_errors='replace', on_bad_lines='skip', chunksize=10000
):
chunks.append(chunk)
df = pd.concat(chunks) if chunks else pd.DataFrame()
content = df.where(pd.notnull(df), "").astype(str).values.tolist()
result = [{"filename": os.path.basename(file_path), "rows": content, "type": "csv"}]
cache[cache_key] = result
return result
except Exception as e:
logger.error(f"CSV processing error: {e}")
return [{"error": f"CSV processing error: {str(e)}"}]
@classmethod
def process_file(cls, file_path: str, file_type: str, cache: Cache) -> List[Dict]:
"""Route file processing based on type"""
processors = {
"pdf": cls.extract_pdf_text,
"xls": cls.excel_to_data,
"xlsx": cls.excel_to_data,
"csv": cls.csv_to_data
}
if file_type not in processors:
return [{"error": f"Unsupported file type: {file_type}"}]
try:
result = processors[file_type](file_path, cache)
if file_type == "pdf":
return [{
"filename": os.path.basename(file_path),
"content": result,
"status": "initial",
"type": "pdf"
}]
return result
except Exception as e:
logger.error(f"Error processing {file_type} file: {e}")
return [{"error": f"Error processing file: {str(e)}"}]
# ==================== TEXT PROCESSING ====================
class TextProcessor:
def __init__(self):
self.tokenizer = AutoTokenizer.from_pretrained("mims-harvard/TxAgent-T1-Llama-3.1-8B")
self.cache = Cache(DIRECTORIES["cache"], size_limit=10*1024**3)
def chunk_text(self, text: str, max_tokens: int = 1200) -> List[str]:
"""Split text into token-limited chunks"""
tokens = self.tokenizer.encode(text)
return [
self.tokenizer.decode(tokens[i:i+max_tokens])
for i in range(0, len(tokens), max_tokens)
]
def clean_response(self, text: str) -> str:
"""Clean and format model response"""
text = sanitize_text(text)
text = re.sub(r"\[.*?\]|\bNone\b", "", text)
diagnoses = []
in_diagnoses = False
for line in text.splitlines():
line = line.strip()
if not line:
continue
if re.match(r"###\s*Missed Diagnoses", line):
in_diagnoses = True
continue
if re.match(r"###\s*(Medication Conflicts|Incomplete Assessments|Urgent Follow-up)", line):
in_diagnoses = False
continue
if in_diagnoses and re.match(r"-\s*.+", line):
diagnosis = re.sub(r"^\-\s*", "", line).strip()
if diagnosis and not re.match(r"No issues identified", diagnosis, re.IGNORECASE):
diagnoses.append(diagnosis)
return " ".join(diagnoses) if diagnoses else ""
def summarize_results(self, analysis: str) -> str:
"""Generate concise summary from full analysis"""
chunks = analysis.split("--- Analysis for Chunk")
diagnoses = []
for chunk in chunks:
chunk = chunk.strip()
if not chunk or "No oversights identified" in chunk:
continue
in_diagnoses = False
for line in chunk.splitlines():
line = line.strip()
if not line:
continue
if re.match(r"###\s*Missed Diagnoses", line):
in_diagnoses = True
continue
if re.match(r"###\s*(Medication Conflicts|Incomplete Assessments|Urgent Follow-up)", line):
in_diagnoses = False
continue
if in_diagnoses and re.match(r"-\s*.+", line):
diagnosis = re.sub(r"^\-\s*", "", line).strip()
if diagnosis and not re.match(r"No issues identified", diagnosis, re.IGNORECASE):
diagnoses.append(diagnosis)
unique_diagnoses = list(dict.fromkeys(diagnoses))
if not unique_diagnoses:
return "No missed diagnoses were identified in the provided records."
if len(unique_diagnoses) > 1:
summary = "Missed diagnoses include " + ", ".join(unique_diagnoses[:-1])
summary += f", and {unique_diagnoses[-1]}"
else:
summary = "Missed diagnoses include " + unique_diagnoses[0]
return summary + ", all requiring urgent clinical review."
# ==================== CORE APPLICATION ====================
class ClinicalOversightApp:
def __init__(self):
self.agent = self._initialize_agent()
self.text_processor = TextProcessor()
self.file_processor = FileProcessor()
def _initialize_agent(self):
"""Initialize the TxAgent with proper configuration"""
logger.info("Initializing AI model...")
log_system_resources("Before Load")
tool_path = os.path.join(DIRECTORIES["tools"], "new_tool.json")
if not os.path.exists(tool_path):
default_tools = os.path.abspath("data/new_tool.json")
shutil.copy(default_tools, tool_path)
agent = TxAgent(
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
tool_files_dict={"new_tool": tool_path},
force_finish=True,
enable_checker=False,
step_rag_num=4,
seed=100,
additional_default_tools=[],
)
agent.init_model()
log_system_resources("After Load")
logger.info("AI Agent Ready")
return agent
def process_response_stream(self, prompt: str, history: List[dict]) -> Generator[dict, None, None]:
"""Stream the agent's response with proper formatting"""
full_response = ""
for chunk in self.agent.run_gradio_chat(prompt, [], 0.2, 512, 2048, False, []):
if not chunk:
continue
if isinstance(chunk, list):
for message in chunk:
if hasattr(message, 'content') and message.content:
cleaned = self.text_processor.clean_response(message.content)
if cleaned:
full_response += cleaned + " "
yield {"role": "assistant", "content": full_response}
elif isinstance(chunk, str) and chunk.strip():
cleaned = self.text_processor.clean_response(chunk)
if cleaned:
full_response += cleaned + " "
yield {"role": "assistant", "content": full_response}
def analyze(self, message: str, history: List[dict], files: List) -> Generator[tuple, None, None]:
"""Main analysis pipeline with proper output formatting"""
chatbot_output = history.copy()
download_output = None
final_summary = ""
progress_text = {"value": "Starting analysis...", "visible": True}
try:
# Add user message to history
chatbot_output.append({"role": "user", "content": message})
yield (chatbot_output, download_output, final_summary, progress_text)
# Process uploaded files
.ArrayIndexOutOfBoundsException: Index -1 out of bounds for length 0
extracted = []
file_hash_value = ""
if files:
with ThreadPoolExecutor(max_workers=2) as executor:
futures = []
for f in files:
file_type = f.name.split(".")[-1].lower()
futures.append(executor.submit(self.file_processor.process_file, f.name, file_type, self.text_processor.cache))
for i, future in enumerate(as_completed(futures), 1):
try:
extracted.extend(future.result())
progress_text = self._update_progress(i, len(files), "Processing files")
yield (chatbot_output, download_output, final_summary, progress_text)
except Exception as e:
logger.error(f"File processing error: {e}")
extracted.append({"error": f"Error processing file: {str(e)}"})
file_hash_value = get_file_hash(files[0].name) if files else ""
chatbot_output.append({"role": "assistant", "content": "โ
File processing complete"})
progress_text = self._update_progress(len(files), len(files), "Files processed")
yield (chatbot_output, download_output, final_summary, progress_text)
# Analyze content
text_content = "\n".join(json.dumps(item) for item in extracted)
chunks = self.text_processor.chunk_text(text_content)
combined_response = ""
for chunk_idx, chunk in enumerate(chunks, 1):
prompt = f"""
Analyze this patient record for missed diagnoses. Provide a concise, evidence-based summary
as a single paragraph without headings or bullet points. Include specific clinical findings
with their potential implications and urgent review recommendations. If no missed diagnoses
are found, state 'No missed diagnoses identified'.
Patient Record (Chunk {chunk_idx}/{len(chunks)}):
{chunk[:1200]}
"""
chatbot_output.append({"role": "assistant", "content": ""})
progress_text = self._update_progress(chunk_idx, len(chunks), "Analyzing")
yield (chatbot_output, download_output, final_summary, progress_text)
# Stream response
chunk_response = ""
for update in self.process_response_stream(prompt, chatbot_output):
chatbot_output[-1] = update
chunk_response = update["content"]
progress_text = self._update_progress(chunk_idx, len(chunks), "Analyzing")
yield (chatbot_output, download_output, final_summary, progress_text)
combined_response += f"--- Analysis for Chunk {chunk_idx} ---\n{chunk_response}\n"
torch.cuda.empty_cache()
gc.collect()
# Generate final outputs
final_summary = self.text_processor.summarize_results(combined_response)
report_path = os.path.join(DIRECTORIES["reports"], f"{file_hash_value}_report.txt") if file_hash_value else None
if report_path:
with open(report_path, "w", encoding="utf-8") as f:
f.write(combined_response + "\n\n" + final_summary)
download_output = report_path if report_path and os.path.exists(report_path) else None
progress_text = {"visible": False}
yield (chatbot_output, download_output, final_summary, progress_text)
except Exception as e:
logger.error(f"Analysis error: {e}")
chatbot_output.append({"role": "assistant", "content": f"โ Error: {str(e)}"})
final_summary = f"Error occurred: {str(e)}"
progress_text = {"visible": False}
yield (chatbot_output, download_output, final_summary, progress_text)
def _update_progress(self, current: int, total: int, stage: str = "") -> Dict[str, Any]:
"""Format progress update for UI"""
progress = f"{stage} - {current}/{total}" if stage else f"{current}/{total}"
return {"value": progress, "visible": True}
def create_interface(self):
"""Create Gradio interface with ChatGPT-like design"""
css = """
body, .gradio-container {
font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, sans-serif;
background: var(--background);
color: var(--text-color);
}
.gradio-container {
max-width: 800px;
margin: 0 auto;
padding: 20px;
}
.chat-container {
background: var(--chat-bg);
border-radius: 12px;
padding: 20px;
height: 80vh;
overflow-y: auto;
box-shadow: 0 2px 8px rgba(0,0,0,0.1);
}
.message {
margin: 10px 0;
padding: 12px 16px;
border-radius: 12px;
max-width: 80%;
transition: all 0.2s ease;
}
.message.user {
background: #007bff;
color: white;
margin-left: auto;
}
.message.assistant {
background: var(--message-bg);
color: var(--text-color);
}
.input-container {
display: flex;
align-items: center;
margin-top: 20px;
background: var(--chat-bg);
padding: 10px 20px;
border-radius: 25px;
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
}
.input-textbox {
flex-grow: 1;
border: none;
background: transparent;
color: var(--text-color);
outline: none;
}
.send-btn {
background: #007bff;
color: white;
border: none;
border-radius: 20px;
padding: 8px 16px;
margin-left: 10px;
}
.send-btn:hover {
background: #0056b3;
}
.sidebar {
background: var(--sidebar-bg);
padding: 20px;
border-radius: 12px;
margin-top: 20px;
box-shadow: 0 2px 8px rgba(0,0,0,0.1);
}
.sidebar-hidden {
display: none;
}
.header {
text-align: center;
margin-bottom: 20px;
}
.theme-toggle {
position: absolute;
top: 20px;
right: 20px;
background: #007bff;
color: white;
border: none;
border-radius: 20px;
padding: 8px 16px;
}
:root {
--background: #ffffff;
--text-color: #333333;
--chat-bg: #f7f7f8;
--message-bg: #e5e5ea;
--sidebar-bg: #f1f1f1;
}
@media (prefers-color-scheme: dark) {
:root {
--background: #1e2a44;
--text-color: #ffffff;
--chat-bg: #2d3b55;
--message-bg: #3e4c6a;
--sidebar-bg: #2a3650;
}
}
@media (max-width: 600px) {
.gradio-container {
padding: 10px;
}
.chat-container {
height: 70vh;
}
.input-container {
flex-direction: column;
gap: 10px;
}
.send-btn {
width: 100%;
margin-left: 0;
}
}
"""
js = """
function toggleTheme() {
const root = document.documentElement;
const isDark = root.style.getPropertyValue('--background') === '#1e2a44';
root.style.setProperty('--background', isDark ? '#ffffff' : '#1e2a44');
root.style.setProperty('--text-color', isDark ? '#333333' : '#ffffff');
root.style.setProperty('--chat-bg', isDark ? '#f7f7f8' : '#2d3b55');
root.style.setProperty('--message-bg', isDark ? '#e5e5ea' : '#3e4c6a');
root.style.setProperty('--sidebar-bg', isDark ? '#f1f1f1' : '#2a3650');
localStorage.setItem('theme', isDark ? 'light' : 'dark');
}
function toggleSidebar() {
const sidebar = document.querySelector('.sidebar');
sidebar.classList.toggle('sidebar-hidden');
}
document.addEventListener('DOMContentLoaded', () => {
const savedTheme = localStorage.getItem('theme');
if (savedTheme === 'dark') toggleTheme();
document.querySelector('.sidebar').classList.add('sidebar-hidden');
});
"""
with gr.Blocks(theme=gr.themes.Default(), css=css, js=js, title="Clinical Oversight Assistant") as app:
gr.HTML("""
<div class='header'>
<h1 style='color: var(--text-color);'>๐ฉบ Clinical Oversight Assistant</h1>
<p style='color: var(--text-color); opacity: 0.7;'>
AI-powered analysis of patient records for missed diagnoses
</p>
</div>
""")
gr.Button("Toggle Light/Dark Mode", elem_classes="theme-toggle").click(
None, None, None, _js="toggleTheme"
)
with gr.Column(elem_classes="chat-container"):
chatbot = gr.Chatbot(
label="Clinical Analysis",
height="100%",
show_copy_button=True,
type="messages",
elem_classes="chatbot"
)
with gr.Row():
gr.Button("Show/Hide Tools", variant="secondary").click(
None, None, None, _js="toggleSidebar"
)
with gr.Column(elem_classes="sidebar"):
file_upload = gr.File(
file_types=[".pdf", ".csv", ".xls", ".xlsx"],
file_count="multiple",
label="Upload Patient Records"
)
gr.Markdown("### ๐ Summary of Findings")
final_summary = gr.Markdown(
"Analysis results will appear here..."
)
gr.Markdown("### ๐ Report Download")
download_output = gr.File(
label="Full Report",
visible=False,
interactive=False
)
with gr.Row(elem_classes="input-container"):
msg_input = gr.Textbox(
placeholder="Ask about potential oversights or upload files...",
show_label=False,
container=False,
elem_classes="input-textbox",
autofocus=True
)
send_btn = gr.Button(
"Analyze",
variant="primary",
elem_classes="send-btn"
)
progress_text = gr.Textbox(
label="Progress Status",
visible=False,
interactive=False
)
send_btn.click(
self.analyze,
inputs=[msg_input, chatbot, file_upload],
outputs=[chatbot, download_output, final_summary, progress_text],
show_progress="hidden"
)
msg_input.submit(
self.analyze,
inputs=[msg_input, chatbot, file_upload],
outputs=[chatbot, download_output, final_summary, progress_text],
show_progress="hidden"
)
app.load(
lambda: [
[], None, "", "", None, {"visible": False}
],
outputs=[chatbot, download_output, final_summary, msg_input, file_upload, progress_text],
queue=False
)
return app
# ==================== APPLICATION ENTRY POINT ====================
if __name__ == "__main__":
try:
logger.info("Starting Clinical Oversight Assistant...")
app = ClinicalOversightApp()
interface = app.create_interface()
interface.queue(
api_open=False,
max_size=20
).launch(
server_name="0.0.0.0",
server_port=7860,
show_error=True,
allowed_paths=[DIRECTORIES["reports"]],
share=False
)
except Exception as e:
logger.error(f"Application failed to start: {e}")
raise
finally:
if torch.distributed.is_initialized():
torch.distributed.destroy_process_group() |