|
from llama_cpp import Llama |
|
import gradio as gr |
|
|
|
llm = Llama.from_pretrained( |
|
repo_id="Robzy/Llama-3.2-1B-Instruct-Finetuned-q4_k_m", |
|
filename="unsloth.Q4_K_M.gguf", |
|
) |
|
|
|
def predict(message, history): |
|
messages = [{"role": "system", "content": "You are a helpful assistant."}] |
|
for user_message, bot_message in history: |
|
if user_message: |
|
messages.append({"role": "user", "content": user_message}) |
|
if bot_message: |
|
messages.append({"role": "assistant", "content": bot_message}) |
|
messages.append({"role": "user", "content": message}) |
|
|
|
response = "" |
|
for chunk in llm.create_chat_completion( |
|
stream=True, |
|
messages=messages, |
|
): |
|
part = chunk["choices"][0]["delta"].get("content", None) |
|
if part: |
|
response += part |
|
yield response |
|
|
|
demo = gr.ChatInterface(predict) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |
|
|