creating two requirements folders
Browse files- all-requirements.txt +11 -0
- app.py +55 -18
- requirements.txt +0 -1
all-requirements.txt
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
transformers
|
| 2 |
+
gradio
|
| 3 |
+
gradio-client
|
| 4 |
+
httpx
|
| 5 |
+
idna
|
| 6 |
+
langchain_openai
|
| 7 |
+
python-dotenv
|
| 8 |
+
torch
|
| 9 |
+
spacy
|
| 10 |
+
umap-learn
|
| 11 |
+
plotly
|
app.py
CHANGED
|
@@ -1,11 +1,12 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
from transformers import pipeline
|
| 3 |
-
from embedding_gen import load_skills_from_date, visualize3D
|
| 4 |
import numpy as np
|
| 5 |
import pickle
|
| 6 |
|
| 7 |
-
token_skill_classifier = pipeline(model="jjzha/jobbert_skill_extraction", aggregation_strategy="first")
|
| 8 |
-
token_knowledge_classifier = pipeline(model="
|
|
|
|
| 9 |
|
| 10 |
|
| 11 |
examples = [
|
|
@@ -30,19 +31,55 @@ def aggregate_span(results):
|
|
| 30 |
|
| 31 |
return new_results
|
| 32 |
|
| 33 |
-
def ner(text):
|
| 34 |
|
| 35 |
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
|
| 42 |
-
|
| 43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
|
| 45 |
-
return {"text": text, "entities": output_knowledge}
|
| 46 |
|
| 47 |
|
| 48 |
import plotly.express as px
|
|
@@ -61,12 +98,12 @@ fig.update_layout(
|
|
| 61 |
|
| 62 |
with gr.Blocks() as demo:
|
| 63 |
|
| 64 |
-
gr.Interface(fn=ner,
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
)
|
| 70 |
|
| 71 |
# gr.Markdown("Embedding visualisation of sought skills in ML job posting in Stockholm, Sweden on LinkedIn")
|
| 72 |
gr.Plot(fig)
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
from transformers import pipeline
|
| 3 |
+
# from embedding_gen import load_skills_from_date, visualize3D
|
| 4 |
import numpy as np
|
| 5 |
import pickle
|
| 6 |
|
| 7 |
+
# token_skill_classifier = pipeline(model="jjzha/jobbert_skill_extraction", aggregation_strategy="first")
|
| 8 |
+
# token_knowledge_classifier = pipeline(model="jjzha/jobbert_knowledge_extraction")
|
| 9 |
+
# token_knowledge_classifier = pipeline(model="Robzy/jobbert_knowledge_extraction")
|
| 10 |
|
| 11 |
|
| 12 |
examples = [
|
|
|
|
| 31 |
|
| 32 |
return new_results
|
| 33 |
|
| 34 |
+
# def ner(text):
|
| 35 |
|
| 36 |
|
| 37 |
+
# output_knowledge = token_knowledge_classifier(text)
|
| 38 |
+
# for result in output_knowledge:
|
| 39 |
+
# if result.get("entity_group"):
|
| 40 |
+
# result["entity"] = "Knowledge"
|
| 41 |
+
# del result["entity_group"]
|
| 42 |
|
| 43 |
+
# if len(output_knowledge) > 0:
|
| 44 |
+
# output_knowledge = aggregate_span(output_knowledge)
|
| 45 |
+
|
| 46 |
+
# return {"text": text, "entities": output_knowledge}
|
| 47 |
+
|
| 48 |
+
### Visualisation 3D
|
| 49 |
+
|
| 50 |
+
import os
|
| 51 |
+
|
| 52 |
+
def load_skills_from_date(base_folder, date):
|
| 53 |
+
date_folder = os.path.join(base_folder, date)
|
| 54 |
+
all_skills = set() # To ensure unique skills
|
| 55 |
+
if os.path.exists(date_folder) and os.path.isdir(date_folder):
|
| 56 |
+
for file_name in os.listdir(date_folder):
|
| 57 |
+
file_path = os.path.join(date_folder, file_name)
|
| 58 |
+
if file_name.endswith(".txt"):
|
| 59 |
+
with open(file_path, 'r', encoding='utf-8') as f:
|
| 60 |
+
all_skills.update(line.strip() for line in f if line.strip())
|
| 61 |
+
return list(all_skills)
|
| 62 |
+
|
| 63 |
+
def visualize3D(reduced_embeddings, labels, skills, n_clusters, output_folder, date):
|
| 64 |
+
|
| 65 |
+
fig = px.scatter_3d(
|
| 66 |
+
x=reduced_embeddings[:, 0],
|
| 67 |
+
y=reduced_embeddings[:, 1],
|
| 68 |
+
z=reduced_embeddings[:, 2],
|
| 69 |
+
color=labels,
|
| 70 |
+
text=skills,
|
| 71 |
+
title=f"KMeans Clustering with {n_clusters} Clusters ({date})"
|
| 72 |
+
)
|
| 73 |
+
|
| 74 |
+
# Save the clustered plot
|
| 75 |
+
# os.makedirs(output_folder, exist_ok=True)
|
| 76 |
+
# plot_path = os.path.join(output_folder, f"{date}_3D_clustering.html")
|
| 77 |
+
# fig.write_html(plot_path)
|
| 78 |
+
# print(f"3D clustered plot saved at {plot_path}")
|
| 79 |
+
|
| 80 |
+
# fig.show()
|
| 81 |
+
return fig
|
| 82 |
|
|
|
|
| 83 |
|
| 84 |
|
| 85 |
import plotly.express as px
|
|
|
|
| 98 |
|
| 99 |
with gr.Blocks() as demo:
|
| 100 |
|
| 101 |
+
# gr.Interface(fn=ner,
|
| 102 |
+
# inputs=gr.Textbox(placeholder="Enter sentence here..."),
|
| 103 |
+
# outputs=["highlight"],
|
| 104 |
+
# examples=examples,
|
| 105 |
+
# title="In-demand skills in machine learning (ML) industry"
|
| 106 |
+
# )
|
| 107 |
|
| 108 |
# gr.Markdown("Embedding visualisation of sought skills in ML job posting in Stockholm, Sweden on LinkedIn")
|
| 109 |
gr.Plot(fig)
|
requirements.txt
CHANGED
|
@@ -7,5 +7,4 @@ langchain_openai
|
|
| 7 |
python-dotenv
|
| 8 |
torch
|
| 9 |
spacy
|
| 10 |
-
umap-learn
|
| 11 |
plotly
|
|
|
|
| 7 |
python-dotenv
|
| 8 |
torch
|
| 9 |
spacy
|
|
|
|
| 10 |
plotly
|