Spaces:
Sleeping
Sleeping
File size: 4,583 Bytes
43106f9 2e28476 f2e3576 938a35d 2e28476 f2e3576 1237c34 f2e3576 2e28476 f2e3576 2e28476 f6be049 2e28476 f6be049 2e28476 f6be049 2e28476 f6be049 f2e3576 f6be049 2e28476 f6be049 2e28476 f6be049 1237c34 2e28476 938a35d 2e28476 1237c34 f6be049 2e28476 f6be049 2e28476 f2e3576 938a35d f2e3576 1237c34 2e28476 1237c34 2e28476 1237c34 2e28476 f6be049 2e28476 f6be049 1237c34 f6be049 2e28476 43106f9 2e28476 43106f9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Connection closed.\n",
"Connected. Call `.close()` to terminate connection gracefully.\n",
"\n",
"Logged in to project, explore it here https://c.app.hopsworks.ai:443/p/1160344\n",
"Connected. Call `.close()` to terminate connection gracefully.\n",
"Connected. Call `.close()` to terminate connection gracefully.\n",
"Finished: Reading data from Hopsworks, using Hopsworks Feature Query Service (3.28s) \n",
"Finished: Reading data from Hopsworks, using Hopsworks Feature Query Service (1.04s) \n"
]
}
],
"source": [
"import streamlit as st\n",
"import pandas as pd\n",
"import numpy as np\n",
"import datetime\n",
"import hopsworks\n",
"from functions import figure, retrieve\n",
"import os\n",
"import pickle\n",
"import plotly.express as px\n",
"import json\n",
"from datetime import datetime\n",
"import os\n",
"\n",
"\n",
"# Real data\n",
"today = datetime.today().strftime('%Y-%m-%d')\n",
"df = retrieve.get_merged_dataframe()"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Connection closed.\n",
"Connected. Call `.close()` to terminate connection gracefully.\n",
"\n",
"Logged in to project, explore it here https://c.app.hopsworks.ai:443/p/1160344\n",
"Connected. Call `.close()` to terminate connection gracefully.\n",
"Connected. Call `.close()` to terminate connection gracefully.\n",
"No air_quality_fv feature view found\n",
"No air_quality feature group found\n",
"No weather feature group found\n",
"No aq_predictions feature group found\n",
"No air_quality_xgboost_model model found\n",
"Connected. Call `.close()` to terminate connection gracefully.\n",
"Deleted secret SENSOR_LOCATION_JSON\n"
]
}
],
"source": [
"import hopsworks\n",
"import os\n",
"\n",
"from functions import util\n",
"api_key = os.getenv('HOPSWORKS_API_KEY')\n",
"project_name = os.getenv('HOPSWORKS_PROJECT')\n",
"project = hopsworks.login(project=project_name, api_key_value=api_key)\n",
"util.purge_project(project)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"9"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"def backfill_predictions_for_monitoring(weather_fg, air_quality_df, monitor_fg, model):\n",
" weather_df = weather_fg.read()\n",
" weather_df = weather_df.sort_values(by=['date'], ascending=True)\n",
" weather_df['date'] = weather_df['date'].dt.tz_convert(None).astype('datetime64[ns]')\n",
" air_quality_df_filter = air_quality_df[['date', 'past_air_quality']]\n",
" monitor_fg_filter = monitor_fg.read()[['date','past_air_quality']]\n",
" combined_df = pd.concat([air_quality_df_filter, monitor_fg_filter])\n",
" combined_df['date'] = pd.to_datetime(combined_df['date'], utc=True)\n",
" combined_df['date'] = combined_df['date'].dt.tz_convert(None).astype('datetime64[ns]')\n",
" features_df = pd.merge(weather_df, combined_df, on='date', how='left')\n",
" \n",
" features_df = features_df.tail(10)\n",
" features_df['predicted_pm25'] = model.predict(features_df[['past_air_quality','temperature_2m_mean', 'precipitation_sum', 'wind_speed_10m_max', 'wind_direction_10m_dominant']])\n",
" air_quality_df['date'] = pd.to_datetime(air_quality_df['date'])\n",
" # features_df['date'] = features_df['date'].dt.tz_convert(None).astype('datetime64[ns]')\n",
" \n",
" df = pd.merge(features_df, air_quality_df[['date','pm25','street','country']], on=\"date\")\n",
" df['days_before_forecast_day'] = 1\n",
" hindcast_df = df\n",
" df = df.drop('pm25', axis=1)\n",
" monitor_fg.insert(df, write_options={\"wait_for_job\": True})\n",
" return hindcast_df"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"language_info": {
"name": "python"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|