Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| from loadimg import load_img | |
| import spaces | |
| from transformers import AutoModelForImageSegmentation | |
| import torch | |
| from torchvision import transforms | |
| import moviepy.editor as mp | |
| from pydub import AudioSegment | |
| from PIL import Image | |
| import numpy as np | |
| import os | |
| import tempfile | |
| import uuid | |
| torch.set_float32_matmul_precision(["high", "highest"][0]) | |
| birefnet = AutoModelForImageSegmentation.from_pretrained( | |
| "ZhengPeng7/BiRefNet", trust_remote_code=True | |
| ) | |
| birefnet.to("cuda") | |
| transform_image = transforms.Compose( | |
| [ | |
| transforms.Resize((1024, 1024)), | |
| transforms.ToTensor(), | |
| transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), | |
| ] | |
| ) | |
| def fn(vid, bg_type="Color", bg_image=None, color="#00FF00", fps=0): | |
| # Load the video using moviepy | |
| video = mp.VideoFileClip(vid) | |
| # Load original fps if fps value is equal to 0 | |
| if fps == 0: | |
| fps = video.fps | |
| # Extract audio from the video | |
| audio = video.audio | |
| # Process video in chunks of 1 second | |
| chunk_duration = 1 # seconds | |
| total_duration = video.duration | |
| start_time = 0 | |
| processed_frames = [] | |
| yield gr.update(visible=True), gr.update(visible=False), None | |
| while start_time < total_duration: | |
| end_time = min(start_time + chunk_duration, total_duration) | |
| chunk = video.subclip(start_time, end_time) | |
| chunk_frames = chunk.iter_frames(fps=fps) | |
| for frame in chunk_frames: | |
| pil_image = Image.fromarray(frame) | |
| if bg_type == "Color": | |
| processed_image = process(pil_image, color) | |
| else: | |
| processed_image = process(pil_image, bg_image) | |
| processed_frames.append(np.array(processed_image)) | |
| yield processed_image, None, None | |
| # Save processed frames for the current chunk | |
| temp_dir = "temp" | |
| os.makedirs(temp_dir, exist_ok=True) | |
| for i, frame in enumerate(processed_frames): | |
| Image.fromarray(frame).save(os.path.join(temp_dir, f"frame_{start_time}_{i}.png")) | |
| # Clear processed frames for the current chunk | |
| processed_frames = [] | |
| progress = f'<div class="progress-container"><div class="progress-bar" style="--current: {start_time}; --total: {total_duration};"></div></div>' | |
| yield None, None, gr.update(value=progress) | |
| start_time += chunk_duration | |
| # Load all saved frames | |
| all_frames = [] | |
| for filename in sorted(os.listdir(temp_dir)): | |
| if filename.startswith("frame_") and filename.endswith(".png"): | |
| frame = np.array(Image.open(os.path.join(temp_dir, filename))) | |
| all_frames.append(frame) | |
| # Create a new video from the processed frames | |
| processed_video = mp.ImageSequenceClip(all_frames, fps=fps) | |
| # Add the original audio back to the processed video | |
| processed_video = processed_video.set_audio(audio) | |
| # Save the processed video to a temporary file | |
| temp_filepath = os.path.join(temp_dir, "processed_video.mp4") | |
| processed_video.write_videofile(temp_filepath, codec="libx264") | |
| # Clean up temporary files | |
| for filename in os.listdir(temp_dir): | |
| os.remove(os.path.join(temp_dir, filename)) | |
| yield gr.update(visible=False), gr.update(visible=True), gr.update(value=1) | |
| # Return the path to the temporary file | |
| yield processed_image, temp_filepath, None | |
| def process(image, bg): | |
| image_size = image.size | |
| input_images = transform_image(image).unsqueeze(0).to("cuda") | |
| # Prediction | |
| with torch.no_grad(): | |
| preds = birefnet(input_images)[-1].sigmoid().cpu() | |
| pred = preds[0].squeeze() | |
| pred_pil = transforms.ToPILImage()(pred) | |
| mask = pred_pil.resize(image_size) | |
| if bg.startswith("#"): | |
| color_rgb = tuple(int(bg[i : i + 2], 16) for i in (1, 3, 5)) | |
| background = Image.new("RGBA", image_size, color_rgb + (255,)) | |
| else: | |
| background = Image.open(bg).convert("RGBA").resize(image_size) | |
| # Composite the image onto the background using the mask | |
| image = Image.composite(image, background, mask) | |
| return image | |
| with gr.Blocks() as demo: | |
| with gr.Row(): | |
| in_video = gr.Video(label="Input Video") | |
| stream_image = gr.Image(label="Streaming Output", visible=False) | |
| out_video = gr.Video(label="Final Output Video") | |
| submit_button = gr.Button("Change Background") | |
| with gr.Row(): | |
| fps_slider = gr.Slider( | |
| minimum=0, | |
| maximum=60, | |
| step=1, | |
| value=0, | |
| label="Output FPS (0 will inherit the original fps value)", | |
| ) | |
| bg_type = gr.Radio(["Color", "Image"], label="Background Type", value="Color") | |
| color_picker = gr.ColorPicker(label="Background Color", value="#00FF00", visible=True) | |
| bg_image = gr.Image(label="Background Image", type="filepath", visible=False) | |
| def update_visibility(bg_type): | |
| if bg_type == "Color": | |
| return gr.update(visible=True), gr.update(visible=False) | |
| else: | |
| return gr.update(visible=False), gr.update(visible=True) | |
| bg_type.change(update_visibility, inputs=bg_type, outputs=[color_picker, bg_image]) | |
| progress_bar = gr.Markdown(elem_id="progress") | |
| examples = gr.Examples( | |
| [["rickroll-2sec.mp4", "Image", "images.webp"], ["rickroll-2sec.mp4", "Color", None]], | |
| inputs=[in_video, bg_type, bg_image], | |
| outputs=[stream_image, out_video, progress_bar], | |
| fn=fn, | |
| cache_examples=True, | |
| cache_mode="eager", | |
| ) | |
| submit_button.click( | |
| fn, | |
| inputs=[in_video, bg_type, bg_image, color_picker, fps_slider], | |
| outputs=[stream_image, out_video, progress_bar], | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch(show_error=True) |