Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,432 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from math import exp
|
| 3 |
+
import re
|
| 4 |
+
import struct
|
| 5 |
+
import requests
|
| 6 |
+
import io
|
| 7 |
+
from enum import IntEnum
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
class GGUFValueType(IntEnum):
|
| 11 |
+
UINT8 = 0
|
| 12 |
+
INT8 = 1
|
| 13 |
+
UINT16 = 2
|
| 14 |
+
INT16 = 3
|
| 15 |
+
UINT32 = 4
|
| 16 |
+
INT32 = 5
|
| 17 |
+
FLOAT32 = 6
|
| 18 |
+
BOOL = 7
|
| 19 |
+
STRING = 8
|
| 20 |
+
ARRAY = 9
|
| 21 |
+
UINT64 = 10
|
| 22 |
+
INT64 = 11
|
| 23 |
+
FLOAT64 = 12
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
_simple_value_packing = {
|
| 27 |
+
GGUFValueType.UINT8: "<B",
|
| 28 |
+
GGUFValueType.INT8: "<b",
|
| 29 |
+
GGUFValueType.UINT16: "<H",
|
| 30 |
+
GGUFValueType.INT16: "<h",
|
| 31 |
+
GGUFValueType.UINT32: "<I",
|
| 32 |
+
GGUFValueType.INT32: "<i",
|
| 33 |
+
GGUFValueType.FLOAT32: "<f",
|
| 34 |
+
GGUFValueType.UINT64: "<Q",
|
| 35 |
+
GGUFValueType.INT64: "<q",
|
| 36 |
+
GGUFValueType.FLOAT64: "<d",
|
| 37 |
+
GGUFValueType.BOOL: "?",
|
| 38 |
+
}
|
| 39 |
+
|
| 40 |
+
value_type_info = {
|
| 41 |
+
GGUFValueType.UINT8: 1,
|
| 42 |
+
GGUFValueType.INT8: 1,
|
| 43 |
+
GGUFValueType.UINT16: 2,
|
| 44 |
+
GGUFValueType.INT16: 2,
|
| 45 |
+
GGUFValueType.UINT32: 4,
|
| 46 |
+
GGUFValueType.INT32: 4,
|
| 47 |
+
GGUFValueType.FLOAT32: 4,
|
| 48 |
+
GGUFValueType.UINT64: 8,
|
| 49 |
+
GGUFValueType.INT64: 8,
|
| 50 |
+
GGUFValueType.FLOAT64: 8,
|
| 51 |
+
GGUFValueType.BOOL: 1,
|
| 52 |
+
}
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
def get_single(value_type, file):
|
| 56 |
+
if value_type == GGUFValueType.STRING:
|
| 57 |
+
value_length = struct.unpack("<Q", file.read(8))[0]
|
| 58 |
+
value = file.read(value_length)
|
| 59 |
+
try:
|
| 60 |
+
value = value.decode('utf-8')
|
| 61 |
+
except:
|
| 62 |
+
pass
|
| 63 |
+
else:
|
| 64 |
+
type_str = _simple_value_packing.get(value_type)
|
| 65 |
+
bytes_length = value_type_info.get(value_type)
|
| 66 |
+
value = struct.unpack(type_str, file.read(bytes_length))[0]
|
| 67 |
+
|
| 68 |
+
return value
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
def load_metadata_from_file(file_obj):
|
| 72 |
+
"""Load metadata from a file-like object"""
|
| 73 |
+
metadata = {}
|
| 74 |
+
|
| 75 |
+
GGUF_MAGIC = struct.unpack("<I", file_obj.read(4))[0]
|
| 76 |
+
GGUF_VERSION = struct.unpack("<I", file_obj.read(4))[0]
|
| 77 |
+
ti_data_count = struct.unpack("<Q", file_obj.read(8))[0]
|
| 78 |
+
kv_data_count = struct.unpack("<Q", file_obj.read(8))[0]
|
| 79 |
+
|
| 80 |
+
if GGUF_VERSION == 1:
|
| 81 |
+
raise Exception('You are using an outdated GGUF, please download a new one.')
|
| 82 |
+
|
| 83 |
+
for i in range(kv_data_count):
|
| 84 |
+
key_length = struct.unpack("<Q", file_obj.read(8))[0]
|
| 85 |
+
key = file_obj.read(key_length)
|
| 86 |
+
|
| 87 |
+
value_type = GGUFValueType(struct.unpack("<I", file_obj.read(4))[0])
|
| 88 |
+
if value_type == GGUFValueType.ARRAY:
|
| 89 |
+
ltype = GGUFValueType(struct.unpack("<I", file_obj.read(4))[0])
|
| 90 |
+
length = struct.unpack("<Q", file_obj.read(8))[0]
|
| 91 |
+
|
| 92 |
+
arr = [get_single(ltype, file_obj) for _ in range(length)]
|
| 93 |
+
metadata[key.decode()] = arr
|
| 94 |
+
else:
|
| 95 |
+
value = get_single(value_type, file_obj)
|
| 96 |
+
metadata[key.decode()] = value
|
| 97 |
+
|
| 98 |
+
# Extract specific fields needed for VRAM calculation
|
| 99 |
+
extracted_fields = {}
|
| 100 |
+
for key, value in metadata.items():
|
| 101 |
+
if key.endswith('.block_count'):
|
| 102 |
+
extracted_fields['n_layers'] = value
|
| 103 |
+
elif key.endswith('.attention.head_count_kv'):
|
| 104 |
+
extracted_fields['n_kv_heads'] = value
|
| 105 |
+
elif key.endswith('.embedding_length'):
|
| 106 |
+
extracted_fields['embedding_dim'] = value
|
| 107 |
+
elif key.endswith('.context_length'):
|
| 108 |
+
extracted_fields['context_length'] = value
|
| 109 |
+
elif key.endswith('.feed_forward_length'):
|
| 110 |
+
extracted_fields['feed_forward_dim'] = value
|
| 111 |
+
|
| 112 |
+
# Add extracted fields to metadata for easy access
|
| 113 |
+
metadata.update(extracted_fields)
|
| 114 |
+
return metadata
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
def download_gguf_partial(url, max_bytes=25 * 1024 * 1024):
|
| 118 |
+
"""Download the first max_bytes from a GGUF URL"""
|
| 119 |
+
try:
|
| 120 |
+
# Set up headers for partial content request
|
| 121 |
+
headers = {'Range': f'bytes=0-{max_bytes-1}'}
|
| 122 |
+
|
| 123 |
+
# Make the request
|
| 124 |
+
response = requests.get(url, headers=headers, stream=True)
|
| 125 |
+
response.raise_for_status()
|
| 126 |
+
|
| 127 |
+
# Read the content
|
| 128 |
+
content = response.content
|
| 129 |
+
|
| 130 |
+
# Convert to BytesIO for file-like interface
|
| 131 |
+
return io.BytesIO(content)
|
| 132 |
+
|
| 133 |
+
except Exception as e:
|
| 134 |
+
raise Exception(f"Failed to download GGUF file: {str(e)}")
|
| 135 |
+
|
| 136 |
+
|
| 137 |
+
def load_metadata(model_url, current_metadata):
|
| 138 |
+
"""Load metadata from model URL and return updated metadata dict"""
|
| 139 |
+
if not model_url or model_url.strip() == "":
|
| 140 |
+
return {}, "Please enter a model URL"
|
| 141 |
+
|
| 142 |
+
try:
|
| 143 |
+
# Get model size first
|
| 144 |
+
model_size_mb = get_model_size_mb_from_url(model_url)
|
| 145 |
+
|
| 146 |
+
# Normalize URL for downloading
|
| 147 |
+
normalized_url = normalize_huggingface_url(model_url)
|
| 148 |
+
|
| 149 |
+
# Download the first 25MB of the file
|
| 150 |
+
file_obj = download_gguf_partial(normalized_url)
|
| 151 |
+
|
| 152 |
+
# Parse the metadata
|
| 153 |
+
metadata = load_metadata_from_file(file_obj)
|
| 154 |
+
|
| 155 |
+
# Extract model name from URL if it's a Hugging Face URL
|
| 156 |
+
model_name = model_url
|
| 157 |
+
if "huggingface.co/" in model_url:
|
| 158 |
+
try:
|
| 159 |
+
# Extract model name from URL like https://huggingface.co/user/model
|
| 160 |
+
parts = model_url.split("huggingface.co/")[1].split("/")
|
| 161 |
+
if len(parts) >= 2:
|
| 162 |
+
model_name = f"{parts[0]}/{parts[1]}"
|
| 163 |
+
except:
|
| 164 |
+
model_name = model_url
|
| 165 |
+
|
| 166 |
+
# Add URL, model name, and size to metadata
|
| 167 |
+
metadata['url'] = model_url
|
| 168 |
+
metadata['model_name'] = model_name
|
| 169 |
+
metadata['model_size_mb'] = model_size_mb
|
| 170 |
+
metadata['loaded'] = True
|
| 171 |
+
|
| 172 |
+
return metadata, gr.update(value=metadata["n_layers"], maximum=metadata["n_layers"]), f"Metadata loaded successfully for: {model_name}"
|
| 173 |
+
|
| 174 |
+
except Exception as e:
|
| 175 |
+
error_msg = f"Error loading metadata: {str(e)}"
|
| 176 |
+
return {}, gr.update(), error_msg
|
| 177 |
+
|
| 178 |
+
|
| 179 |
+
def normalize_huggingface_url(url: str) -> str:
|
| 180 |
+
"""Normalize HuggingFace URL to resolve format for direct access"""
|
| 181 |
+
if 'huggingface.co' not in url:
|
| 182 |
+
return url
|
| 183 |
+
|
| 184 |
+
# Remove query parameters first
|
| 185 |
+
base_url = url.split('?')[0]
|
| 186 |
+
|
| 187 |
+
# Convert blob URL to resolve URL
|
| 188 |
+
if '/blob/' in base_url:
|
| 189 |
+
base_url = base_url.replace('/blob/', '/resolve/')
|
| 190 |
+
|
| 191 |
+
return base_url
|
| 192 |
+
|
| 193 |
+
|
| 194 |
+
def get_model_size_mb_from_url(model_url: str) -> float:
|
| 195 |
+
"""Get model size in MB from URL without downloading, handling multi-part files"""
|
| 196 |
+
try:
|
| 197 |
+
# Normalize the URL for direct access
|
| 198 |
+
normalized_url = normalize_huggingface_url(model_url)
|
| 199 |
+
|
| 200 |
+
# Get size of the main file
|
| 201 |
+
response = requests.head(normalized_url, allow_redirects=True)
|
| 202 |
+
response.raise_for_status()
|
| 203 |
+
main_file_size = int(response.headers.get('content-length', 0))
|
| 204 |
+
|
| 205 |
+
# Extract filename from original URL
|
| 206 |
+
filename = normalized_url.split('/')[-1]
|
| 207 |
+
|
| 208 |
+
# Check for multipart pattern (e.g., model-00001-of-00002.gguf)
|
| 209 |
+
match = re.match(r'(.+)-(\d+)-of-(\d+)\.gguf$', filename)
|
| 210 |
+
|
| 211 |
+
if match:
|
| 212 |
+
base_pattern = match.group(1)
|
| 213 |
+
total_parts = int(match.group(3))
|
| 214 |
+
|
| 215 |
+
total_size = 0
|
| 216 |
+
base_url = '/'.join(normalized_url.split('/')[:-1]) + '/'
|
| 217 |
+
|
| 218 |
+
# Get size of all parts
|
| 219 |
+
for part_num in range(1, total_parts + 1):
|
| 220 |
+
part_filename = f"{base_pattern}-{part_num:05d}-of-{total_parts:05d}.gguf"
|
| 221 |
+
part_url = base_url + part_filename
|
| 222 |
+
|
| 223 |
+
try:
|
| 224 |
+
part_response = requests.head(part_url, allow_redirects=True)
|
| 225 |
+
part_response.raise_for_status()
|
| 226 |
+
part_size = int(part_response.headers.get('content-length', 0))
|
| 227 |
+
total_size += part_size
|
| 228 |
+
except requests.RequestException as e:
|
| 229 |
+
print(f"Warning: Could not get size of {part_filename}, estimating...")
|
| 230 |
+
# If we can't get some parts, estimate based on what we have
|
| 231 |
+
if total_size > 0:
|
| 232 |
+
avg_size = total_size / (part_num - 1)
|
| 233 |
+
remaining_parts = total_parts - (part_num - 1)
|
| 234 |
+
total_size += avg_size * remaining_parts
|
| 235 |
+
else:
|
| 236 |
+
# Fallback to main file size * total parts
|
| 237 |
+
total_size = main_file_size * total_parts
|
| 238 |
+
break
|
| 239 |
+
|
| 240 |
+
return total_size / (1024 ** 2)
|
| 241 |
+
else:
|
| 242 |
+
# Single part file
|
| 243 |
+
return main_file_size / (1024 ** 2)
|
| 244 |
+
|
| 245 |
+
except Exception as e:
|
| 246 |
+
print(f"Error getting model size: {e}")
|
| 247 |
+
return 0.0
|
| 248 |
+
|
| 249 |
+
|
| 250 |
+
def estimate_vram(metadata, gpu_layers, ctx_size, cache_type):
|
| 251 |
+
"""Calculate VRAM usage using the actual formula"""
|
| 252 |
+
try:
|
| 253 |
+
# Extract required values from metadata
|
| 254 |
+
n_layers = metadata.get('n_layers')
|
| 255 |
+
n_kv_heads = metadata.get('n_kv_heads')
|
| 256 |
+
embedding_dim = metadata.get('embedding_dim')
|
| 257 |
+
context_length = metadata.get('context_length')
|
| 258 |
+
feed_forward_dim = metadata.get('feed_forward_dim')
|
| 259 |
+
size_in_mb = metadata.get('model_size_mb', 0)
|
| 260 |
+
|
| 261 |
+
# Check if we have all required fields
|
| 262 |
+
required_fields = [n_layers, n_kv_heads, embedding_dim, context_length, feed_forward_dim]
|
| 263 |
+
if any(field is None for field in required_fields):
|
| 264 |
+
missing = [name for name, field in zip(
|
| 265 |
+
['n_layers', 'n_kv_heads', 'embedding_dim', 'context_length', 'feed_forward_dim'],
|
| 266 |
+
required_fields) if field is None]
|
| 267 |
+
raise ValueError(f"Missing required metadata fields: {missing}")
|
| 268 |
+
|
| 269 |
+
# Ensure gpu_layers doesn't exceed total layers
|
| 270 |
+
if gpu_layers > n_layers:
|
| 271 |
+
gpu_layers = n_layers
|
| 272 |
+
|
| 273 |
+
# Convert cache_type to numeric
|
| 274 |
+
cache_type_map = {'fp16': 16, 'q8_0': 8, 'q4_0': 4}
|
| 275 |
+
cache_type_numeric = cache_type_map.get(cache_type, 16)
|
| 276 |
+
|
| 277 |
+
# Derived features
|
| 278 |
+
size_per_layer = size_in_mb / max(n_layers, 1e-6)
|
| 279 |
+
context_per_layer = context_length / max(n_layers, 1e-6)
|
| 280 |
+
ffn_per_embedding = feed_forward_dim / max(embedding_dim, 1e-6)
|
| 281 |
+
kv_cache_factor = n_kv_heads * cache_type_numeric * ctx_size
|
| 282 |
+
|
| 283 |
+
# Helper function for smaller
|
| 284 |
+
def smaller(x, y):
|
| 285 |
+
return 1 if x < y else 0
|
| 286 |
+
|
| 287 |
+
# Calculate VRAM using the model
|
| 288 |
+
vram = (
|
| 289 |
+
(size_per_layer - 21.19195204848197)
|
| 290 |
+
* exp(0.0001047328491557063 * size_in_mb * smaller(ffn_per_embedding, 2.671096993407845))
|
| 291 |
+
+ 0.0006621544775632052 * context_per_layer
|
| 292 |
+
+ 3.34664386576376e-05 * kv_cache_factor
|
| 293 |
+
) * (1.363306170123392 + gpu_layers) + 1255.163594536052
|
| 294 |
+
|
| 295 |
+
return max(0, vram) # Ensure non-negative result
|
| 296 |
+
|
| 297 |
+
except Exception as e:
|
| 298 |
+
print(f"Error in VRAM calculation: {e}")
|
| 299 |
+
raise
|
| 300 |
+
|
| 301 |
+
|
| 302 |
+
def estimate_vram_wrapper(model_metadata, gpu_layers, ctx_size, cache_type):
|
| 303 |
+
"""Wrapper function to estimate VRAM usage"""
|
| 304 |
+
if not model_metadata or 'model_name' not in model_metadata:
|
| 305 |
+
return "<div id=\"vram-info\">Estimated VRAM to load the model:</div>"
|
| 306 |
+
|
| 307 |
+
# Use cache_type directly (it's already a string from the radio button)
|
| 308 |
+
try:
|
| 309 |
+
result = estimate_vram(model_metadata, gpu_layers, ctx_size, cache_type)
|
| 310 |
+
conservative = result + 906
|
| 311 |
+
return f"""<div id="vram-info">
|
| 312 |
+
<div>Expected VRAM usage: <span class="value">{result:.0f} MiB</span></div>
|
| 313 |
+
<div>Safe estimate: <span class="value">{conservative:.0f} MiB</span> - 95% chance the VRAM is at most this.</div>
|
| 314 |
+
</div>"""
|
| 315 |
+
except Exception as e:
|
| 316 |
+
return f"<div id=\"vram-info\">Estimated VRAM to load the model: <span class=\"value\">Error: {str(e)}</span></div>"
|
| 317 |
+
|
| 318 |
+
|
| 319 |
+
def create_ui():
|
| 320 |
+
"""Create the simplified UI"""
|
| 321 |
+
# Custom CSS to limit max width and center the content
|
| 322 |
+
css = """
|
| 323 |
+
body {
|
| 324 |
+
max-width: 810px !important;
|
| 325 |
+
margin: 0 auto !important;
|
| 326 |
+
}
|
| 327 |
+
|
| 328 |
+
#vram-info {
|
| 329 |
+
padding: 10px;
|
| 330 |
+
border-radius: 4px;
|
| 331 |
+
background-color: var(--background-fill-secondary);
|
| 332 |
+
}
|
| 333 |
+
|
| 334 |
+
#vram-info .value {
|
| 335 |
+
font-weight: bold;
|
| 336 |
+
color: var(--primary-500);
|
| 337 |
+
}
|
| 338 |
+
"""
|
| 339 |
+
|
| 340 |
+
with gr.Blocks(css=css) as demo:
|
| 341 |
+
# State to hold model metadata
|
| 342 |
+
model_metadata = gr.State(value={})
|
| 343 |
+
|
| 344 |
+
gr.Markdown("# Accurage GGUF VRAM Calculator\n\nCalculate VRAM for GGUF models from GPU layers and context length using an accurate formula.\n\nFor an explanation about how this works, consult this blog post: https://oobabooga.github.io/blog/posts/gguf-vram-formula/")
|
| 345 |
+
with gr.Row():
|
| 346 |
+
with gr.Column():
|
| 347 |
+
# Model URL input
|
| 348 |
+
model_url = gr.Textbox(
|
| 349 |
+
label="GGUF Model URL",
|
| 350 |
+
placeholder="https://huggingface.co/bartowski/Meta-Llama-3.1-8B-Instruct-GGUF/blob/main/Meta-Llama-3.1-8B-Instruct-IQ2_M.gguf",
|
| 351 |
+
value=""
|
| 352 |
+
)
|
| 353 |
+
|
| 354 |
+
# Load metadata button
|
| 355 |
+
load_metadata_btn = gr.Button("Load metadata", elem_classes='refresh-button')
|
| 356 |
+
|
| 357 |
+
# GPU layers slider
|
| 358 |
+
gpu_layers = gr.Slider(
|
| 359 |
+
label="GPU Layers",
|
| 360 |
+
minimum=0,
|
| 361 |
+
maximum=256,
|
| 362 |
+
value=256,
|
| 363 |
+
info='`--gpu-layers` in llama.cpp.'
|
| 364 |
+
)
|
| 365 |
+
|
| 366 |
+
# Context size slider
|
| 367 |
+
ctx_size = gr.Slider(
|
| 368 |
+
label='Context Length',
|
| 369 |
+
minimum=512,
|
| 370 |
+
maximum=131072,
|
| 371 |
+
step=256,
|
| 372 |
+
value=8192,
|
| 373 |
+
info='`--ctx-size` in llama.cpp.'
|
| 374 |
+
)
|
| 375 |
+
|
| 376 |
+
# Cache type checkbox group
|
| 377 |
+
cache_type = gr.Radio(
|
| 378 |
+
choices=['fp16', 'q8_0', 'q4_0'],
|
| 379 |
+
value='fp16',
|
| 380 |
+
label="Cache Type",
|
| 381 |
+
info='Cache quantization.'
|
| 382 |
+
)
|
| 383 |
+
|
| 384 |
+
# VRAM info display
|
| 385 |
+
vram_info = gr.HTML(
|
| 386 |
+
value="<div id=\"vram-info\">Estimated VRAM to load the model:</div>"
|
| 387 |
+
)
|
| 388 |
+
|
| 389 |
+
# Status display
|
| 390 |
+
status = gr.Textbox(
|
| 391 |
+
label="Status",
|
| 392 |
+
value="No model loaded",
|
| 393 |
+
interactive=False
|
| 394 |
+
)
|
| 395 |
+
|
| 396 |
+
# Event handlers
|
| 397 |
+
load_metadata_btn.click(
|
| 398 |
+
load_metadata,
|
| 399 |
+
inputs=[model_url, model_metadata],
|
| 400 |
+
outputs=[model_metadata, gpu_layers, status],
|
| 401 |
+
show_progress=True
|
| 402 |
+
).then(
|
| 403 |
+
estimate_vram_wrapper,
|
| 404 |
+
inputs=[model_metadata, gpu_layers, ctx_size, cache_type],
|
| 405 |
+
outputs=[vram_info],
|
| 406 |
+
show_progress=False
|
| 407 |
+
)
|
| 408 |
+
|
| 409 |
+
# Update VRAM estimate when any parameter changes
|
| 410 |
+
for component in [gpu_layers, ctx_size, cache_type]:
|
| 411 |
+
component.change(
|
| 412 |
+
estimate_vram_wrapper,
|
| 413 |
+
inputs=[model_metadata, gpu_layers, ctx_size, cache_type],
|
| 414 |
+
outputs=[vram_info],
|
| 415 |
+
show_progress=False
|
| 416 |
+
)
|
| 417 |
+
|
| 418 |
+
# Also update when model_metadata state changes
|
| 419 |
+
model_metadata.change(
|
| 420 |
+
estimate_vram_wrapper,
|
| 421 |
+
inputs=[model_metadata, gpu_layers, ctx_size, cache_type],
|
| 422 |
+
outputs=[vram_info],
|
| 423 |
+
show_progress=False
|
| 424 |
+
)
|
| 425 |
+
|
| 426 |
+
return demo
|
| 427 |
+
|
| 428 |
+
|
| 429 |
+
if __name__ == "__main__":
|
| 430 |
+
# Create and launch the app
|
| 431 |
+
demo = create_ui()
|
| 432 |
+
demo.launch()
|