Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,432 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from math import exp
|
3 |
+
import re
|
4 |
+
import struct
|
5 |
+
import requests
|
6 |
+
import io
|
7 |
+
from enum import IntEnum
|
8 |
+
|
9 |
+
|
10 |
+
class GGUFValueType(IntEnum):
|
11 |
+
UINT8 = 0
|
12 |
+
INT8 = 1
|
13 |
+
UINT16 = 2
|
14 |
+
INT16 = 3
|
15 |
+
UINT32 = 4
|
16 |
+
INT32 = 5
|
17 |
+
FLOAT32 = 6
|
18 |
+
BOOL = 7
|
19 |
+
STRING = 8
|
20 |
+
ARRAY = 9
|
21 |
+
UINT64 = 10
|
22 |
+
INT64 = 11
|
23 |
+
FLOAT64 = 12
|
24 |
+
|
25 |
+
|
26 |
+
_simple_value_packing = {
|
27 |
+
GGUFValueType.UINT8: "<B",
|
28 |
+
GGUFValueType.INT8: "<b",
|
29 |
+
GGUFValueType.UINT16: "<H",
|
30 |
+
GGUFValueType.INT16: "<h",
|
31 |
+
GGUFValueType.UINT32: "<I",
|
32 |
+
GGUFValueType.INT32: "<i",
|
33 |
+
GGUFValueType.FLOAT32: "<f",
|
34 |
+
GGUFValueType.UINT64: "<Q",
|
35 |
+
GGUFValueType.INT64: "<q",
|
36 |
+
GGUFValueType.FLOAT64: "<d",
|
37 |
+
GGUFValueType.BOOL: "?",
|
38 |
+
}
|
39 |
+
|
40 |
+
value_type_info = {
|
41 |
+
GGUFValueType.UINT8: 1,
|
42 |
+
GGUFValueType.INT8: 1,
|
43 |
+
GGUFValueType.UINT16: 2,
|
44 |
+
GGUFValueType.INT16: 2,
|
45 |
+
GGUFValueType.UINT32: 4,
|
46 |
+
GGUFValueType.INT32: 4,
|
47 |
+
GGUFValueType.FLOAT32: 4,
|
48 |
+
GGUFValueType.UINT64: 8,
|
49 |
+
GGUFValueType.INT64: 8,
|
50 |
+
GGUFValueType.FLOAT64: 8,
|
51 |
+
GGUFValueType.BOOL: 1,
|
52 |
+
}
|
53 |
+
|
54 |
+
|
55 |
+
def get_single(value_type, file):
|
56 |
+
if value_type == GGUFValueType.STRING:
|
57 |
+
value_length = struct.unpack("<Q", file.read(8))[0]
|
58 |
+
value = file.read(value_length)
|
59 |
+
try:
|
60 |
+
value = value.decode('utf-8')
|
61 |
+
except:
|
62 |
+
pass
|
63 |
+
else:
|
64 |
+
type_str = _simple_value_packing.get(value_type)
|
65 |
+
bytes_length = value_type_info.get(value_type)
|
66 |
+
value = struct.unpack(type_str, file.read(bytes_length))[0]
|
67 |
+
|
68 |
+
return value
|
69 |
+
|
70 |
+
|
71 |
+
def load_metadata_from_file(file_obj):
|
72 |
+
"""Load metadata from a file-like object"""
|
73 |
+
metadata = {}
|
74 |
+
|
75 |
+
GGUF_MAGIC = struct.unpack("<I", file_obj.read(4))[0]
|
76 |
+
GGUF_VERSION = struct.unpack("<I", file_obj.read(4))[0]
|
77 |
+
ti_data_count = struct.unpack("<Q", file_obj.read(8))[0]
|
78 |
+
kv_data_count = struct.unpack("<Q", file_obj.read(8))[0]
|
79 |
+
|
80 |
+
if GGUF_VERSION == 1:
|
81 |
+
raise Exception('You are using an outdated GGUF, please download a new one.')
|
82 |
+
|
83 |
+
for i in range(kv_data_count):
|
84 |
+
key_length = struct.unpack("<Q", file_obj.read(8))[0]
|
85 |
+
key = file_obj.read(key_length)
|
86 |
+
|
87 |
+
value_type = GGUFValueType(struct.unpack("<I", file_obj.read(4))[0])
|
88 |
+
if value_type == GGUFValueType.ARRAY:
|
89 |
+
ltype = GGUFValueType(struct.unpack("<I", file_obj.read(4))[0])
|
90 |
+
length = struct.unpack("<Q", file_obj.read(8))[0]
|
91 |
+
|
92 |
+
arr = [get_single(ltype, file_obj) for _ in range(length)]
|
93 |
+
metadata[key.decode()] = arr
|
94 |
+
else:
|
95 |
+
value = get_single(value_type, file_obj)
|
96 |
+
metadata[key.decode()] = value
|
97 |
+
|
98 |
+
# Extract specific fields needed for VRAM calculation
|
99 |
+
extracted_fields = {}
|
100 |
+
for key, value in metadata.items():
|
101 |
+
if key.endswith('.block_count'):
|
102 |
+
extracted_fields['n_layers'] = value
|
103 |
+
elif key.endswith('.attention.head_count_kv'):
|
104 |
+
extracted_fields['n_kv_heads'] = value
|
105 |
+
elif key.endswith('.embedding_length'):
|
106 |
+
extracted_fields['embedding_dim'] = value
|
107 |
+
elif key.endswith('.context_length'):
|
108 |
+
extracted_fields['context_length'] = value
|
109 |
+
elif key.endswith('.feed_forward_length'):
|
110 |
+
extracted_fields['feed_forward_dim'] = value
|
111 |
+
|
112 |
+
# Add extracted fields to metadata for easy access
|
113 |
+
metadata.update(extracted_fields)
|
114 |
+
return metadata
|
115 |
+
|
116 |
+
|
117 |
+
def download_gguf_partial(url, max_bytes=25 * 1024 * 1024):
|
118 |
+
"""Download the first max_bytes from a GGUF URL"""
|
119 |
+
try:
|
120 |
+
# Set up headers for partial content request
|
121 |
+
headers = {'Range': f'bytes=0-{max_bytes-1}'}
|
122 |
+
|
123 |
+
# Make the request
|
124 |
+
response = requests.get(url, headers=headers, stream=True)
|
125 |
+
response.raise_for_status()
|
126 |
+
|
127 |
+
# Read the content
|
128 |
+
content = response.content
|
129 |
+
|
130 |
+
# Convert to BytesIO for file-like interface
|
131 |
+
return io.BytesIO(content)
|
132 |
+
|
133 |
+
except Exception as e:
|
134 |
+
raise Exception(f"Failed to download GGUF file: {str(e)}")
|
135 |
+
|
136 |
+
|
137 |
+
def load_metadata(model_url, current_metadata):
|
138 |
+
"""Load metadata from model URL and return updated metadata dict"""
|
139 |
+
if not model_url or model_url.strip() == "":
|
140 |
+
return {}, "Please enter a model URL"
|
141 |
+
|
142 |
+
try:
|
143 |
+
# Get model size first
|
144 |
+
model_size_mb = get_model_size_mb_from_url(model_url)
|
145 |
+
|
146 |
+
# Normalize URL for downloading
|
147 |
+
normalized_url = normalize_huggingface_url(model_url)
|
148 |
+
|
149 |
+
# Download the first 25MB of the file
|
150 |
+
file_obj = download_gguf_partial(normalized_url)
|
151 |
+
|
152 |
+
# Parse the metadata
|
153 |
+
metadata = load_metadata_from_file(file_obj)
|
154 |
+
|
155 |
+
# Extract model name from URL if it's a Hugging Face URL
|
156 |
+
model_name = model_url
|
157 |
+
if "huggingface.co/" in model_url:
|
158 |
+
try:
|
159 |
+
# Extract model name from URL like https://huggingface.co/user/model
|
160 |
+
parts = model_url.split("huggingface.co/")[1].split("/")
|
161 |
+
if len(parts) >= 2:
|
162 |
+
model_name = f"{parts[0]}/{parts[1]}"
|
163 |
+
except:
|
164 |
+
model_name = model_url
|
165 |
+
|
166 |
+
# Add URL, model name, and size to metadata
|
167 |
+
metadata['url'] = model_url
|
168 |
+
metadata['model_name'] = model_name
|
169 |
+
metadata['model_size_mb'] = model_size_mb
|
170 |
+
metadata['loaded'] = True
|
171 |
+
|
172 |
+
return metadata, gr.update(value=metadata["n_layers"], maximum=metadata["n_layers"]), f"Metadata loaded successfully for: {model_name}"
|
173 |
+
|
174 |
+
except Exception as e:
|
175 |
+
error_msg = f"Error loading metadata: {str(e)}"
|
176 |
+
return {}, gr.update(), error_msg
|
177 |
+
|
178 |
+
|
179 |
+
def normalize_huggingface_url(url: str) -> str:
|
180 |
+
"""Normalize HuggingFace URL to resolve format for direct access"""
|
181 |
+
if 'huggingface.co' not in url:
|
182 |
+
return url
|
183 |
+
|
184 |
+
# Remove query parameters first
|
185 |
+
base_url = url.split('?')[0]
|
186 |
+
|
187 |
+
# Convert blob URL to resolve URL
|
188 |
+
if '/blob/' in base_url:
|
189 |
+
base_url = base_url.replace('/blob/', '/resolve/')
|
190 |
+
|
191 |
+
return base_url
|
192 |
+
|
193 |
+
|
194 |
+
def get_model_size_mb_from_url(model_url: str) -> float:
|
195 |
+
"""Get model size in MB from URL without downloading, handling multi-part files"""
|
196 |
+
try:
|
197 |
+
# Normalize the URL for direct access
|
198 |
+
normalized_url = normalize_huggingface_url(model_url)
|
199 |
+
|
200 |
+
# Get size of the main file
|
201 |
+
response = requests.head(normalized_url, allow_redirects=True)
|
202 |
+
response.raise_for_status()
|
203 |
+
main_file_size = int(response.headers.get('content-length', 0))
|
204 |
+
|
205 |
+
# Extract filename from original URL
|
206 |
+
filename = normalized_url.split('/')[-1]
|
207 |
+
|
208 |
+
# Check for multipart pattern (e.g., model-00001-of-00002.gguf)
|
209 |
+
match = re.match(r'(.+)-(\d+)-of-(\d+)\.gguf$', filename)
|
210 |
+
|
211 |
+
if match:
|
212 |
+
base_pattern = match.group(1)
|
213 |
+
total_parts = int(match.group(3))
|
214 |
+
|
215 |
+
total_size = 0
|
216 |
+
base_url = '/'.join(normalized_url.split('/')[:-1]) + '/'
|
217 |
+
|
218 |
+
# Get size of all parts
|
219 |
+
for part_num in range(1, total_parts + 1):
|
220 |
+
part_filename = f"{base_pattern}-{part_num:05d}-of-{total_parts:05d}.gguf"
|
221 |
+
part_url = base_url + part_filename
|
222 |
+
|
223 |
+
try:
|
224 |
+
part_response = requests.head(part_url, allow_redirects=True)
|
225 |
+
part_response.raise_for_status()
|
226 |
+
part_size = int(part_response.headers.get('content-length', 0))
|
227 |
+
total_size += part_size
|
228 |
+
except requests.RequestException as e:
|
229 |
+
print(f"Warning: Could not get size of {part_filename}, estimating...")
|
230 |
+
# If we can't get some parts, estimate based on what we have
|
231 |
+
if total_size > 0:
|
232 |
+
avg_size = total_size / (part_num - 1)
|
233 |
+
remaining_parts = total_parts - (part_num - 1)
|
234 |
+
total_size += avg_size * remaining_parts
|
235 |
+
else:
|
236 |
+
# Fallback to main file size * total parts
|
237 |
+
total_size = main_file_size * total_parts
|
238 |
+
break
|
239 |
+
|
240 |
+
return total_size / (1024 ** 2)
|
241 |
+
else:
|
242 |
+
# Single part file
|
243 |
+
return main_file_size / (1024 ** 2)
|
244 |
+
|
245 |
+
except Exception as e:
|
246 |
+
print(f"Error getting model size: {e}")
|
247 |
+
return 0.0
|
248 |
+
|
249 |
+
|
250 |
+
def estimate_vram(metadata, gpu_layers, ctx_size, cache_type):
|
251 |
+
"""Calculate VRAM usage using the actual formula"""
|
252 |
+
try:
|
253 |
+
# Extract required values from metadata
|
254 |
+
n_layers = metadata.get('n_layers')
|
255 |
+
n_kv_heads = metadata.get('n_kv_heads')
|
256 |
+
embedding_dim = metadata.get('embedding_dim')
|
257 |
+
context_length = metadata.get('context_length')
|
258 |
+
feed_forward_dim = metadata.get('feed_forward_dim')
|
259 |
+
size_in_mb = metadata.get('model_size_mb', 0)
|
260 |
+
|
261 |
+
# Check if we have all required fields
|
262 |
+
required_fields = [n_layers, n_kv_heads, embedding_dim, context_length, feed_forward_dim]
|
263 |
+
if any(field is None for field in required_fields):
|
264 |
+
missing = [name for name, field in zip(
|
265 |
+
['n_layers', 'n_kv_heads', 'embedding_dim', 'context_length', 'feed_forward_dim'],
|
266 |
+
required_fields) if field is None]
|
267 |
+
raise ValueError(f"Missing required metadata fields: {missing}")
|
268 |
+
|
269 |
+
# Ensure gpu_layers doesn't exceed total layers
|
270 |
+
if gpu_layers > n_layers:
|
271 |
+
gpu_layers = n_layers
|
272 |
+
|
273 |
+
# Convert cache_type to numeric
|
274 |
+
cache_type_map = {'fp16': 16, 'q8_0': 8, 'q4_0': 4}
|
275 |
+
cache_type_numeric = cache_type_map.get(cache_type, 16)
|
276 |
+
|
277 |
+
# Derived features
|
278 |
+
size_per_layer = size_in_mb / max(n_layers, 1e-6)
|
279 |
+
context_per_layer = context_length / max(n_layers, 1e-6)
|
280 |
+
ffn_per_embedding = feed_forward_dim / max(embedding_dim, 1e-6)
|
281 |
+
kv_cache_factor = n_kv_heads * cache_type_numeric * ctx_size
|
282 |
+
|
283 |
+
# Helper function for smaller
|
284 |
+
def smaller(x, y):
|
285 |
+
return 1 if x < y else 0
|
286 |
+
|
287 |
+
# Calculate VRAM using the model
|
288 |
+
vram = (
|
289 |
+
(size_per_layer - 21.19195204848197)
|
290 |
+
* exp(0.0001047328491557063 * size_in_mb * smaller(ffn_per_embedding, 2.671096993407845))
|
291 |
+
+ 0.0006621544775632052 * context_per_layer
|
292 |
+
+ 3.34664386576376e-05 * kv_cache_factor
|
293 |
+
) * (1.363306170123392 + gpu_layers) + 1255.163594536052
|
294 |
+
|
295 |
+
return max(0, vram) # Ensure non-negative result
|
296 |
+
|
297 |
+
except Exception as e:
|
298 |
+
print(f"Error in VRAM calculation: {e}")
|
299 |
+
raise
|
300 |
+
|
301 |
+
|
302 |
+
def estimate_vram_wrapper(model_metadata, gpu_layers, ctx_size, cache_type):
|
303 |
+
"""Wrapper function to estimate VRAM usage"""
|
304 |
+
if not model_metadata or 'model_name' not in model_metadata:
|
305 |
+
return "<div id=\"vram-info\">Estimated VRAM to load the model:</div>"
|
306 |
+
|
307 |
+
# Use cache_type directly (it's already a string from the radio button)
|
308 |
+
try:
|
309 |
+
result = estimate_vram(model_metadata, gpu_layers, ctx_size, cache_type)
|
310 |
+
conservative = result + 906
|
311 |
+
return f"""<div id="vram-info">
|
312 |
+
<div>Expected VRAM usage: <span class="value">{result:.0f} MiB</span></div>
|
313 |
+
<div>Safe estimate: <span class="value">{conservative:.0f} MiB</span> - 95% chance the VRAM is at most this.</div>
|
314 |
+
</div>"""
|
315 |
+
except Exception as e:
|
316 |
+
return f"<div id=\"vram-info\">Estimated VRAM to load the model: <span class=\"value\">Error: {str(e)}</span></div>"
|
317 |
+
|
318 |
+
|
319 |
+
def create_ui():
|
320 |
+
"""Create the simplified UI"""
|
321 |
+
# Custom CSS to limit max width and center the content
|
322 |
+
css = """
|
323 |
+
body {
|
324 |
+
max-width: 810px !important;
|
325 |
+
margin: 0 auto !important;
|
326 |
+
}
|
327 |
+
|
328 |
+
#vram-info {
|
329 |
+
padding: 10px;
|
330 |
+
border-radius: 4px;
|
331 |
+
background-color: var(--background-fill-secondary);
|
332 |
+
}
|
333 |
+
|
334 |
+
#vram-info .value {
|
335 |
+
font-weight: bold;
|
336 |
+
color: var(--primary-500);
|
337 |
+
}
|
338 |
+
"""
|
339 |
+
|
340 |
+
with gr.Blocks(css=css) as demo:
|
341 |
+
# State to hold model metadata
|
342 |
+
model_metadata = gr.State(value={})
|
343 |
+
|
344 |
+
gr.Markdown("# Accurage GGUF VRAM Calculator\n\nCalculate VRAM for GGUF models from GPU layers and context length using an accurate formula.\n\nFor an explanation about how this works, consult this blog post: https://oobabooga.github.io/blog/posts/gguf-vram-formula/")
|
345 |
+
with gr.Row():
|
346 |
+
with gr.Column():
|
347 |
+
# Model URL input
|
348 |
+
model_url = gr.Textbox(
|
349 |
+
label="GGUF Model URL",
|
350 |
+
placeholder="https://huggingface.co/bartowski/Meta-Llama-3.1-8B-Instruct-GGUF/blob/main/Meta-Llama-3.1-8B-Instruct-IQ2_M.gguf",
|
351 |
+
value=""
|
352 |
+
)
|
353 |
+
|
354 |
+
# Load metadata button
|
355 |
+
load_metadata_btn = gr.Button("Load metadata", elem_classes='refresh-button')
|
356 |
+
|
357 |
+
# GPU layers slider
|
358 |
+
gpu_layers = gr.Slider(
|
359 |
+
label="GPU Layers",
|
360 |
+
minimum=0,
|
361 |
+
maximum=256,
|
362 |
+
value=256,
|
363 |
+
info='`--gpu-layers` in llama.cpp.'
|
364 |
+
)
|
365 |
+
|
366 |
+
# Context size slider
|
367 |
+
ctx_size = gr.Slider(
|
368 |
+
label='Context Length',
|
369 |
+
minimum=512,
|
370 |
+
maximum=131072,
|
371 |
+
step=256,
|
372 |
+
value=8192,
|
373 |
+
info='`--ctx-size` in llama.cpp.'
|
374 |
+
)
|
375 |
+
|
376 |
+
# Cache type checkbox group
|
377 |
+
cache_type = gr.Radio(
|
378 |
+
choices=['fp16', 'q8_0', 'q4_0'],
|
379 |
+
value='fp16',
|
380 |
+
label="Cache Type",
|
381 |
+
info='Cache quantization.'
|
382 |
+
)
|
383 |
+
|
384 |
+
# VRAM info display
|
385 |
+
vram_info = gr.HTML(
|
386 |
+
value="<div id=\"vram-info\">Estimated VRAM to load the model:</div>"
|
387 |
+
)
|
388 |
+
|
389 |
+
# Status display
|
390 |
+
status = gr.Textbox(
|
391 |
+
label="Status",
|
392 |
+
value="No model loaded",
|
393 |
+
interactive=False
|
394 |
+
)
|
395 |
+
|
396 |
+
# Event handlers
|
397 |
+
load_metadata_btn.click(
|
398 |
+
load_metadata,
|
399 |
+
inputs=[model_url, model_metadata],
|
400 |
+
outputs=[model_metadata, gpu_layers, status],
|
401 |
+
show_progress=True
|
402 |
+
).then(
|
403 |
+
estimate_vram_wrapper,
|
404 |
+
inputs=[model_metadata, gpu_layers, ctx_size, cache_type],
|
405 |
+
outputs=[vram_info],
|
406 |
+
show_progress=False
|
407 |
+
)
|
408 |
+
|
409 |
+
# Update VRAM estimate when any parameter changes
|
410 |
+
for component in [gpu_layers, ctx_size, cache_type]:
|
411 |
+
component.change(
|
412 |
+
estimate_vram_wrapper,
|
413 |
+
inputs=[model_metadata, gpu_layers, ctx_size, cache_type],
|
414 |
+
outputs=[vram_info],
|
415 |
+
show_progress=False
|
416 |
+
)
|
417 |
+
|
418 |
+
# Also update when model_metadata state changes
|
419 |
+
model_metadata.change(
|
420 |
+
estimate_vram_wrapper,
|
421 |
+
inputs=[model_metadata, gpu_layers, ctx_size, cache_type],
|
422 |
+
outputs=[vram_info],
|
423 |
+
show_progress=False
|
424 |
+
)
|
425 |
+
|
426 |
+
return demo
|
427 |
+
|
428 |
+
|
429 |
+
if __name__ == "__main__":
|
430 |
+
# Create and launch the app
|
431 |
+
demo = create_ui()
|
432 |
+
demo.launch()
|