RoAr777 commited on
Commit
ac8e64b
·
verified ·
1 Parent(s): 73ba487

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +13 -8
app.py CHANGED
@@ -97,22 +97,26 @@ llm = ChatGoogleGenerativeAI(
97
  max_tokens=None,
98
  timeout=None,
99
  max_retries=2,
100
- prompt_template="""
 
101
  You are a highly specialized legal assistant with deep knowledge of the Indian Penal Code (IPC).
102
  Your primary task is to retrieve and summarize legal information accurately from the IPC.pdf document provided to you.
 
103
  Your responses should be highly specific, fact-based, and free from any speculation or hallucinations.
104
  Always cite the exact section from the IPC when providing an answer.
105
  If the information is not available in the document, clearly state that and do not make any assumptions.
 
 
106
 
107
  Example task: "What is the punishment for theft according to the IPC?"
108
  Example response: "According to Section 379 of the IPC, the punishment for theft is imprisonment of either description for a term which may extend to three years, or with fine, or with both."
 
 
109
 
110
- Task: {{query}}
111
 
112
  Response:
113
- """,
114
- )
115
-
116
  agent_tools = [ipc_tool,crpc_tool]
117
 
118
  agent = initialize_agent(
@@ -125,7 +129,8 @@ agent = initialize_agent(
125
  )
126
  def encode_image_to_base64(image_path):
127
  return pytesseract.image_to_string(Image.open(image_path))
128
- def chatbot_response(query):
 
129
  if query.get('files'):
130
  # Encode image to base64
131
  image_data=""
@@ -144,7 +149,7 @@ def chatbot_response(query):
144
  message = HumanMessage(content=[{"type": "text", "text": query}])
145
 
146
  # Invoke the model with the multimodal message
147
- result = agent.invoke([message])
148
  response = result['output']
149
  intermediate_steps = result.get('intermediate_steps', [])
150
 
@@ -158,7 +163,7 @@ def chatbot_response(query):
158
  # Step 5: Gradio Interface
159
  from gradio import ChatMessage
160
  def chatbot_interface(messages,prompt):
161
- response, thought_process = chatbot_response(prompt)
162
  #messages.append(ChatMessage(role="user", content=prompt))
163
 
164
  for x in prompt["files"]:
 
97
  max_tokens=None,
98
  timeout=None,
99
  max_retries=2,
100
+ )
101
+ prompt="""
102
  You are a highly specialized legal assistant with deep knowledge of the Indian Penal Code (IPC).
103
  Your primary task is to retrieve and summarize legal information accurately from the IPC.pdf document provided to you.
104
+ Keep the conversation Topic related to Department of Justice
105
  Your responses should be highly specific, fact-based, and free from any speculation or hallucinations.
106
  Always cite the exact section from the IPC when providing an answer.
107
  If the information is not available in the document, clearly state that and do not make any assumptions.
108
+
109
+
110
 
111
  Example task: "What is the punishment for theft according to the IPC?"
112
  Example response: "According to Section 379 of the IPC, the punishment for theft is imprisonment of either description for a term which may extend to three years, or with fine, or with both."
113
+
114
+ History:{{}}
115
 
116
+ Task: {{}}
117
 
118
  Response:
119
+ """
 
 
120
  agent_tools = [ipc_tool,crpc_tool]
121
 
122
  agent = initialize_agent(
 
129
  )
130
  def encode_image_to_base64(image_path):
131
  return pytesseract.image_to_string(Image.open(image_path))
132
+ def chatbot_response(m,query):
133
+
134
  if query.get('files'):
135
  # Encode image to base64
136
  image_data=""
 
149
  message = HumanMessage(content=[{"type": "text", "text": query}])
150
 
151
  # Invoke the model with the multimodal message
152
+ result = agent.invoke(prompt.format(m,message))
153
  response = result['output']
154
  intermediate_steps = result.get('intermediate_steps', [])
155
 
 
163
  # Step 5: Gradio Interface
164
  from gradio import ChatMessage
165
  def chatbot_interface(messages,prompt):
166
+ response, thought_process = chatbot_response(messages,prompt)
167
  #messages.append(ChatMessage(role="user", content=prompt))
168
 
169
  for x in prompt["files"]: