RoAr777 commited on
Commit
8770e81
·
verified ·
1 Parent(s): 44b8719

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -9
app.py CHANGED
@@ -349,9 +349,8 @@ llm = ChatOpenAI(
349
  max_tokens=None,
350
  timeout=None,
351
  max_retries=5
352
- )| PromptTemplate(
353
- input_variables=["history", "query"],
354
- template="""
355
  You are JobAI. You process user input and generate human-like responses to assist with job searching and application processes. Tasks include:
356
  (provide links where ever required)
357
  - Searching for job openings based on user criteria
@@ -360,11 +359,11 @@ llm = ChatOpenAI(
360
  - Generating cover letters tailored to specific job openings
361
  - Offering interview preparation assistance
362
  Respond to user queries and engage in conversation to guide them through the job application process. Utilize context and understanding to provide accurate and helpful responses
363
- {{history}}
364
 
365
  User Query: {{query}}
366
  """
367
- )
368
  agent_tools = [ipc_tool, crpc_tool, doj_tool, faq_tool]
369
 
370
  agent = initialize_agent(
@@ -380,7 +379,7 @@ agent = initialize_agent(
380
  def encode_image_to_base64(image_path):
381
  return pytesseract.image_to_string(Image.open(image_path))
382
  def chatbot_response(history,query):
383
-
384
  if query.get('files'):
385
  # Encode image to base64
386
  image_data=""
@@ -390,17 +389,17 @@ def chatbot_response(history,query):
390
  # Create a multimodal message with both text and image data
391
  message = HumanMessage(
392
  content=[
393
- {"type": "text", "text": query['text'] +" System :Image(s) was added to this prompt by this user. Text Extracted from this image (Some words may be misspelled ,Use your understanding ):"+image_data}, # Add text input
394
 
395
  ]
396
  )
397
  #k+=" System :Image(s) was added to this prompt by this user. Text Extracted from this image (Some words may be misspelled ,Use your understanding ):"+image_data
398
  else:
399
  # If no image, only pass the text
400
- message = HumanMessage(content=[{"type": "text", "text": query}])
401
 
402
  # Invoke the model with the multimodal message
403
- result = agent.invoke({'history':history,'input':message.content},handle_parsing_errors=True)
404
  response = result['output']
405
  intermediate_steps = result.get('intermediate_steps', [])
406
 
 
349
  max_tokens=None,
350
  timeout=None,
351
  max_retries=5
352
+ )
353
+ template="""
 
354
  You are JobAI. You process user input and generate human-like responses to assist with job searching and application processes. Tasks include:
355
  (provide links where ever required)
356
  - Searching for job openings based on user criteria
 
359
  - Generating cover letters tailored to specific job openings
360
  - Offering interview preparation assistance
361
  Respond to user queries and engage in conversation to guide them through the job application process. Utilize context and understanding to provide accurate and helpful responses
362
+
363
 
364
  User Query: {{query}}
365
  """
366
+
367
  agent_tools = [ipc_tool, crpc_tool, doj_tool, faq_tool]
368
 
369
  agent = initialize_agent(
 
379
  def encode_image_to_base64(image_path):
380
  return pytesseract.image_to_string(Image.open(image_path))
381
  def chatbot_response(history,query):
382
+ print(history)
383
  if query.get('files'):
384
  # Encode image to base64
385
  image_data=""
 
389
  # Create a multimodal message with both text and image data
390
  message = HumanMessage(
391
  content=[
392
+ {"type": "text", "text": template.format(query['text'] +" System :Image(s) was added to this prompt by this user. Text Extracted from this image (Some words may be misspelled ,Use your understanding ):"+image_data)}, # Add text input
393
 
394
  ]
395
  )
396
  #k+=" System :Image(s) was added to this prompt by this user. Text Extracted from this image (Some words may be misspelled ,Use your understanding ):"+image_data
397
  else:
398
  # If no image, only pass the text
399
+ message = HumanMessage(content=[{"type": "text", "text": template.format(query)}])
400
 
401
  # Invoke the model with the multimodal message
402
+ result = agent.invoke([message],handle_parsing_errors=True)
403
  response = result['output']
404
  intermediate_steps = result.get('intermediate_steps', [])
405