RoAr777 commited on
Commit
873e443
·
verified ·
1 Parent(s): 910c46a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +19 -5
app.py CHANGED
@@ -9,7 +9,10 @@ import gradio as gr
9
  import os
10
  import pytesseract
11
  from PIL import Image
12
- import pickle
 
 
 
13
  model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
14
  index = faiss.read_index('IPC_index.faiss')
15
  index2 = faiss.read_index('CrpC_index.faiss')
@@ -26,6 +29,13 @@ with open('CrPC_F.pkl', 'rb') as f:
26
  with open('CrPC_C.pkl', 'rb') as f:
27
  chunk_indices2 = pickle.load(f)
28
  # Step 3: Retrieval with Citations using PDF filename
 
 
 
 
 
 
 
29
  def retrieve_info_with_citation(query, top_k=5):
30
  query_embedding = model.encode([query])
31
  D, I = index.search(query_embedding, k=top_k)
@@ -319,9 +329,13 @@ doj_tool=Tool(
319
  func=doj_info,
320
  description="Provides Summarized Information about Department of Justice."
321
  )
322
- llm = ChatGoogleGenerativeAI(
323
- model="gemini-1.5-pro",
324
- temperature=0.25,
 
 
 
 
325
  max_tokens=None,
326
  timeout=None,
327
  max_retries=2,
@@ -345,7 +359,7 @@ llm = ChatGoogleGenerativeAI(
345
  """
346
  )
347
 
348
- agent_tools = [ipc_tool,crpc_tool,doj_tool]
349
 
350
  agent = initialize_agent(
351
  tools=agent_tools,
 
9
  import os
10
  import pytesseract
11
  from PIL import Image
12
+ import pickle
13
+ from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint
14
+ # Load the CSV data as a DataFrame
15
+ df = pd.read_csv("hf://datasets/kshitij230/Indian-Law/Indian-Law.csv")
16
  model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
17
  index = faiss.read_index('IPC_index.faiss')
18
  index2 = faiss.read_index('CrpC_index.faiss')
 
29
  with open('CrPC_C.pkl', 'rb') as f:
30
  chunk_indices2 = pickle.load(f)
31
  # Step 3: Retrieval with Citations using PDF filename
32
+ def retrieve_faq(query):
33
+ relevant_rows = df[df['Instruction'].str.contains(query, case=False)]
34
+ if not relevant_rows.empty:
35
+ response = relevant_rows.iloc[0]['Response']
36
+ return response
37
+ else:
38
+ return "Sorry, I couldn't find relevant FAQs for your query."
39
  def retrieve_info_with_citation(query, top_k=5):
40
  query_embedding = model.encode([query])
41
  D, I = index.search(query_embedding, k=top_k)
 
329
  func=doj_info,
330
  description="Provides Summarized Information about Department of Justice."
331
  )
332
+ faq_tool=Tool(
333
+ name="Commonly Asked Questions",
334
+ func=retrieve_faq,
335
+ description="Provides Answers to commonly asked questions related to query keyword(s)"
336
+ )
337
+ llm = HuggingFaceEndpoint(
338
+ model="meta-llama/Meta-Llama-3-8B",
339
  max_tokens=None,
340
  timeout=None,
341
  max_retries=2,
 
359
  """
360
  )
361
 
362
+ agent_tools = [ipc_tool,crpc_tool,doj_tool,faq_tool]
363
 
364
  agent = initialize_agent(
365
  tools=agent_tools,