|
import PyPDF2
|
|
import re
|
|
from sentence_transformers import SentenceTransformer
|
|
import faiss
|
|
from langchain.agents import initialize_agent, AgentType,Tool
|
|
from langchain.schema import HumanMessage
|
|
from langchain_google_genai import ChatGoogleGenerativeAI
|
|
import gradio as gr
|
|
import os
|
|
import pytesseract
|
|
from PIL import Image
|
|
pytesseract.pytesseract.tesseract_cmd = r"tesseract.exe"
|
|
|
|
|
|
|
|
def load_pdf_text(file_path):
|
|
with open(file_path, "rb") as file:
|
|
reader = PyPDF2.PdfReader(file)
|
|
text = ""
|
|
for page in reader.pages:
|
|
text += page.extract_text()
|
|
return text
|
|
|
|
def chunk_text(text, chunk_size=700):
|
|
|
|
chunks = []
|
|
sentences = re.split(r'(?<=[.!?])\s+', text)
|
|
current_chunk = ""
|
|
for sentence in sentences:
|
|
if len(current_chunk) + len(sentence) > chunk_size:
|
|
chunks.append(current_chunk)
|
|
current_chunk = sentence
|
|
else:
|
|
current_chunk += " " + sentence
|
|
chunks.append(current_chunk)
|
|
return chunks
|
|
|
|
|
|
def load_and_process_chapters(directory):
|
|
chapter_data = {}
|
|
for filename in os.listdir(directory):
|
|
if filename.endswith(".pdf"):
|
|
file_path = os.path.join(directory, filename)
|
|
text = load_pdf_text(file_path)
|
|
chunks = chunk_text(text)
|
|
chapter_data[filename] = chunks
|
|
return chapter_data
|
|
|
|
ipc_data = load_and_process_chapters("IPC")
|
|
crpc_data=load_and_process_chapters("CrPC")
|
|
|
|
model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
|
|
|
|
index = faiss.IndexFlatL2(model.get_sentence_embedding_dimension())
|
|
index2 = faiss.IndexFlatL2(model.get_sentence_embedding_dimension())
|
|
|
|
|
|
flattened_data = []
|
|
pdf_filenames = []
|
|
chunk_indices = []
|
|
for pdf_filename, chunks in ipc_data.items():
|
|
for i, chunk in enumerate(chunks):
|
|
flattened_data.append(chunk)
|
|
pdf_filenames.append(pdf_filename)
|
|
chunk_indices.append(i)
|
|
|
|
embeddings = model.encode(flattened_data)
|
|
index.add(embeddings)
|
|
|
|
flattened_data2 = []
|
|
pdf_filenames2 = []
|
|
chunk_indices2 = []
|
|
for pdf_filename, chunks in crpc_data.items():
|
|
for i, chunk in enumerate(chunks):
|
|
flattened_data2.append(chunk)
|
|
pdf_filenames2.append(pdf_filename)
|
|
chunk_indices2.append(i)
|
|
|
|
embeddings = model.encode(flattened_data2)
|
|
index2.add(embeddings)
|
|
|
|
|
|
def retrieve_info_with_citation(query, top_k=5):
|
|
query_embedding = model.encode([query])
|
|
D, I = index.search(query_embedding, k=top_k)
|
|
|
|
results = []
|
|
for i in range(min(top_k, len(I[0]))):
|
|
if D[0][i] < 1.0:
|
|
chunk_index = I[0][i]
|
|
pdf_filename = pdf_filenames[chunk_index]
|
|
chunk_number = chunk_indices[chunk_index] + 1
|
|
match = flattened_data[chunk_index]
|
|
citation = f"Source: {pdf_filename}, Chunk: {chunk_number}"
|
|
results.append((match, citation))
|
|
else:
|
|
break
|
|
|
|
if results:
|
|
return results
|
|
else:
|
|
return [("I'm sorry, I couldn't find relevant information.", "Source: N/A")]
|
|
|
|
|
|
def retrieve_info_with_citation2(query, top_k=5):
|
|
query_embedding = model.encode([query])
|
|
D, I = index2.search(query_embedding, k=top_k)
|
|
|
|
results = []
|
|
for i in range(min(top_k, len(I[0]))):
|
|
if D[0][i] < 1.0:
|
|
chunk_index = I[0][i]
|
|
pdf_filename = pdf_filenames2[chunk_index]
|
|
chunk_number = chunk_indices2[chunk_index] + 1
|
|
match = flattened_data2[chunk_index]
|
|
citation = f"Source: {pdf_filename}, Chunk: {chunk_number}"
|
|
results.append((match, citation))
|
|
else:
|
|
break
|
|
|
|
if results:
|
|
return results
|
|
else:
|
|
return [("I'm sorry, I couldn't find relevant information.", "Source: N/A")]
|
|
|
|
def retrieve_info(query):
|
|
results = retrieve_info_with_citation(query)
|
|
formatted_results = "\n\n".join([f"{i+1}. {match}\n{citation}" for i, (match, citation) in enumerate(results)])
|
|
return formatted_results
|
|
|
|
def retrieve_info2(query):
|
|
results = retrieve_info_with_citation2(query)
|
|
formatted_results = "\n\n".join([f"{i+1}. {match}\n{citation}" for i, (match, citation) in enumerate(results)])
|
|
return formatted_results
|
|
|
|
ipc_tool = Tool(
|
|
name="IPC Information Retrieval",
|
|
func=retrieve_info,
|
|
description="Retrieve information from the Indian Penal Code Related to query keyword(s)."
|
|
)
|
|
|
|
crpc_tool=Tool(
|
|
name="CrPC Information Retrieval",
|
|
func=retrieve_info2,
|
|
description="Retrieve information from the Code of Criminal Procedure(CrPC) Related to query keyword(s)."
|
|
)
|
|
llm = ChatGoogleGenerativeAI(
|
|
model="gemini-1.5-pro",
|
|
temperature=0.25,
|
|
max_tokens=None,
|
|
timeout=None,
|
|
max_retries=2,
|
|
prompt_template="""
|
|
You are a highly specialized legal assistant with deep knowledge of the Indian Penal Code (IPC).
|
|
Your primary task is to retrieve and summarize legal information accurately from the IPC.pdf document provided to you.
|
|
Your responses should be highly specific, fact-based, and free from any speculation or hallucinations.
|
|
Always cite the exact section from the IPC when providing an answer.
|
|
If the information is not available in the document, clearly state that and do not make any assumptions.
|
|
|
|
Example task: "What is the punishment for theft according to the IPC?"
|
|
Example response: "According to Section 379 of the IPC, the punishment for theft is imprisonment of either description for a term which may extend to three years, or with fine, or with both."
|
|
|
|
Task: {{query}}
|
|
|
|
Response:
|
|
""",
|
|
)
|
|
|
|
agent_tools = [ipc_tool,crpc_tool]
|
|
|
|
agent = initialize_agent(
|
|
tools=agent_tools,
|
|
llm=llm,
|
|
agent=AgentType.STRUCTURED_CHAT_ZERO_SHOT_REACT_DESCRIPTION,
|
|
verbose=True,
|
|
return_intermediate_steps=True,
|
|
handle_parsing_errors=True,
|
|
)
|
|
def encode_image_to_base64(image_path):
|
|
return pytesseract.image_to_string(Image.open(image_path))
|
|
def chatbot_response(query):
|
|
if query.get('files'):
|
|
|
|
image_data=""
|
|
for x in range(len(query["files"])):
|
|
image_data += f"{x}. "+encode_image_to_base64(query["files"][x]) +"\n"
|
|
|
|
|
|
message = HumanMessage(
|
|
content=[
|
|
{"type": "text", "text": query['text'] +" System :Image(s) was added to this prompt by this user. Text Extracted from this image (Some words may be misspelled ,Use your understanding ):"+image_data},
|
|
|
|
]
|
|
)
|
|
else:
|
|
|
|
message = HumanMessage(content=[{"type": "text", "text": query}])
|
|
|
|
|
|
result = agent.invoke([message])
|
|
response = result['output']
|
|
intermediate_steps = result.get('intermediate_steps', [])
|
|
|
|
thought_process = ""
|
|
for action, observation in intermediate_steps:
|
|
thought_process += f"**Thought:** {action.log}\n"
|
|
thought_process += f"**Action:** {action.tool}\n"
|
|
thought_process += f"**Observation:** {observation}\n\n"
|
|
|
|
return response, thought_process.strip()
|
|
|
|
from gradio import ChatMessage
|
|
def chatbot_interface(messages,prompt):
|
|
response, thought_process = chatbot_response(prompt)
|
|
|
|
|
|
for x in prompt["files"]:
|
|
messages.append(ChatMessage(role="user", content={"path": x, "mime_type": "image/png"}))
|
|
if prompt["text"] is not None:
|
|
messages.append(ChatMessage(role="user", content=prompt['text']))
|
|
if thought_process:
|
|
messages.append(ChatMessage(role="assistant", content=thought_process,metadata={"title": "🧠 Thought Process"}))
|
|
messages.append(ChatMessage(role="assistant", content=response))
|
|
|
|
return messages, gr.MultimodalTextbox(value=None, interactive=True)
|
|
|
|
|
|
def vote(data: gr.LikeData):
|
|
if data.liked:
|
|
print("You upvoted this response: " + data.value)
|
|
else:
|
|
print("You downvoted this response: " + data.value)
|
|
|
|
with gr.Blocks(theme=gr.themes.Soft()) as iface:
|
|
|
|
gr.Markdown(
|
|
"""
|
|
<div style="font-size: 24px; font-weight: bold; color: #333;">
|
|
DoJ Chatbot
|
|
</div>
|
|
<div style="font-size: 16px; color: #555;">
|
|
Ask questions related to the Department of Justice.
|
|
</div>
|
|
"""
|
|
)
|
|
chatbot = gr.Chatbot(type="messages",avatar_images=("user.jpeg", "logo.jpeg"), bubble_full_width=True)
|
|
query_input = gr.MultimodalTextbox(interactive=True,
|
|
placeholder="Enter message or upload file...", show_label=False)
|
|
submit_button = gr.Button("Send")
|
|
|
|
submit_button.click(chatbot_interface, [chatbot, query_input], [chatbot, query_input])
|
|
query_input.submit(chatbot_interface, [chatbot, query_input], [chatbot,query_input])
|
|
|
|
chatbot.like(vote, None, None)
|
|
|
|
|
|
iface.launch(
|
|
show_error=True,
|
|
prevent_thread_lock=True
|
|
) |