File size: 7,129 Bytes
55b729c
 
 
 
9b42243
55b729c
 
 
 
 
 
2734b98
d1dcb6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0297631
d1dcb6a
 
 
 
 
 
 
 
 
0297631
d1dcb6a
 
 
 
0297631
 
 
 
d1dcb6a
0297631
 
d1dcb6a
 
 
 
 
55b729c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1dcb6a
0297631
 
 
 
 
55b729c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1dcb6a
29fb422
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import PyPDF2
import re
from sentence_transformers import SentenceTransformer
import faiss
from langchain.agents import initialize_agent, AgentType,Tool
from langchain.schema import HumanMessage
from langchain_google_genai import ChatGoogleGenerativeAI
import gradio as gr
import os
import pytesseract
from PIL import Image

model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
index = faiss.read_index('IPC_index.faiss')
index2 = faiss.read_index('CrpC_index.faiss')


# Step 3: Retrieval with Citations using PDF filename
def retrieve_info_with_citation(query, top_k=5):
    query_embedding = model.encode([query])
    D, I = index.search(query_embedding, k=top_k)

    results = []
    for i in range(min(top_k, len(I[0]))):
        if D[0][i] < 1.0:  # Relevance threshold
            chunk_index = I[0][i]
            citation = f"Source: IPC"
            results.append((match, citation))
        else:
            break

    if results:
        return results
    else:
        return [("I'm sorry, I couldn't find relevant information.", "Source: N/A")]


def retrieve_info_with_citation2(query, top_k=5):
    query_embedding = model.encode([query])
    D, I = index.search(query_embedding, k=top_k)

    results = []
    for i in range(min(top_k, len(I[0]))):
        if D[0][i] < 1.0:  # Relevance threshold
            chunk_index = I[0][i]
            citation = f"Source: CrPC"
            results.append((match, citation))
        else:
            break

    if results:
        return results
    else:
        return [("I'm sorry, I couldn't find relevant information.", "Source: N/A")]

def retrieve_info(query):
    results = retrieve_info_with_citation(query)
    formatted_results = "\n\n".join([f"{i+1}. {match}\n{citation}" for i, (match, citation) in enumerate(results)])
    return formatted_results

def retrieve_info2(query):
    results = retrieve_info_with_citation2(query)
    formatted_results = "\n\n".join([f"{i+1}. {match}\n{citation}" for i, (match, citation) in enumerate(results)])
    return formatted_results

ipc_tool = Tool(
    name="IPC Information Retrieval",
    func=retrieve_info,
    description="Retrieve information from the Indian Penal Code Related to query keyword(s)."
)

crpc_tool=Tool(
    name="CrPC Information Retrieval",
    func=retrieve_info2,
    description="Retrieve information from the Code of Criminal Procedure(CrPC) Related to query keyword(s)."
)
llm = ChatGoogleGenerativeAI(
    model="gemini-1.5-pro",
    temperature=0.25,
    max_tokens=None,
    timeout=None,
    max_retries=2,
    prompt_template="""
    You are a highly specialized legal assistant with deep knowledge of the Indian Penal Code (IPC). 
    Your primary task is to retrieve and summarize legal information accurately from the IPC.pdf document provided to you. 
    Your responses should be highly specific, fact-based, and free from any speculation or hallucinations. 
    Always cite the exact section from the IPC when providing an answer. 
    If the information is not available in the document, clearly state that and do not make any assumptions.

    Example task: "What is the punishment for theft according to the IPC?"
    Example response: "According to Section 379 of the IPC, the punishment for theft is imprisonment of either description for a term which may extend to three years, or with fine, or with both."

    Task: {{query}}

    Response:
    """,
)

agent_tools = [ipc_tool,crpc_tool]

agent = initialize_agent(
    tools=agent_tools,
    llm=llm,
    agent=AgentType.STRUCTURED_CHAT_ZERO_SHOT_REACT_DESCRIPTION,
    verbose=True,
    return_intermediate_steps=True,
    handle_parsing_errors=True,
)
def encode_image_to_base64(image_path):
    return pytesseract.image_to_string(Image.open(image_path))
def chatbot_response(query):
    if query.get('files'):
        # Encode image to base64
        image_data=""
        for x in range(len(query["files"])):
            image_data += f"{x}. "+encode_image_to_base64(query["files"][x]) +"\n"
        
        # Create a multimodal message with both text and image data
        message = HumanMessage(
            content=[
                {"type": "text", "text": query['text'] +" System :Image(s) was added to this prompt by this user. Text Extracted from this image (Some words may be misspelled ,Use your understanding ):"+image_data},  # Add text input
               
            ]
        )
    else:
        # If no image, only pass the text
        message = HumanMessage(content=[{"type": "text", "text": query}])

    # Invoke the model with the multimodal message
    result = agent.invoke([message])
    response = result['output']
    intermediate_steps = result.get('intermediate_steps', [])
    
    thought_process = ""
    for action, observation in intermediate_steps:
        thought_process += f"**Thought:** {action.log}\n"
        thought_process += f"**Action:** {action.tool}\n"
        thought_process += f"**Observation:** {observation}\n\n"

    return response, thought_process.strip()
# Step 5: Gradio Interface
from gradio import ChatMessage
def chatbot_interface(messages,prompt):
    response, thought_process = chatbot_response(prompt)
    #messages.append(ChatMessage(role="user", content=prompt))
    
    for x in prompt["files"]:
            messages.append(ChatMessage(role="user", content={"path": x, "mime_type": "image/png"}))
    if prompt["text"] is not None:
            messages.append(ChatMessage(role="user", content=prompt['text']))
    if thought_process:
        messages.append(ChatMessage(role="assistant", content=thought_process,metadata={"title": "🧠 Thought Process"}))
    messages.append(ChatMessage(role="assistant", content=response))
   
    return messages,  gr.MultimodalTextbox(value=None, interactive=True)


def vote(data: gr.LikeData):
    if data.liked:
        print("You upvoted this response: " + data.value)
    else:
        print("You downvoted this response: " + data.value)

with gr.Blocks(theme=gr.themes.Soft()) as iface:
   
            gr.Markdown(
                """
                <div style="font-size: 24px; font-weight: bold; color: #333;">
                    DoJ Chatbot
                </div>
                <div style="font-size: 16px; color: #555;">
                    Ask questions related to the Department of Justice.
                </div>
                """
            )
            chatbot = gr.Chatbot(type="messages",avatar_images=("user.jpeg", "logo.jpeg"), bubble_full_width=True)  # Chatbot component to display conversation history
            query_input = gr.MultimodalTextbox(interactive=True,
                                      placeholder="Enter message or upload file...", show_label=False)
            submit_button = gr.Button("Send")

            submit_button.click(chatbot_interface, [chatbot, query_input], [chatbot, query_input])
            query_input.submit(chatbot_interface, [chatbot, query_input], [chatbot,query_input])

            chatbot.like(vote, None, None)  # Adding like/dislike functionality to the chatbot

        
iface.launch(
    show_error=True
)