Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# app.py
|
2 |
+
import gradio as gr
|
3 |
+
import pandas as pd
|
4 |
+
import numpy as np
|
5 |
+
import yfinance as yf
|
6 |
+
from ta import add_all_ta_features
|
7 |
+
from ta.utils import dropna
|
8 |
+
from transformers import pipeline, AutoModelForQuestionAnswering, AutoTokenizer
|
9 |
+
from sentence_transformers import SentenceTransformer
|
10 |
+
import faiss
|
11 |
+
|
12 |
+
# Load the dataset from Google Drive
|
13 |
+
def load_data():
|
14 |
+
url = "https://drive.google.com/uc?export=download&id=1N1bCVRSacs7_nENJzleqqNRHA22-H9B5"
|
15 |
+
df = pd.read_csv(url)
|
16 |
+
return df
|
17 |
+
|
18 |
+
# Preprocess the data
|
19 |
+
def preprocess_data(df):
|
20 |
+
df = dropna(df)
|
21 |
+
df = add_all_ta_features(df, open="Open", high="High", low="Low", close="Close", volume="Volume", fillna=True)
|
22 |
+
return df
|
23 |
+
|
24 |
+
# Train the FAISS index for RAG
|
25 |
+
def train_faiss_index(df):
|
26 |
+
model = SentenceTransformer('all-MiniLM-L6-v2')
|
27 |
+
embeddings = model.encode(df['Close'].astype(str).tolist())
|
28 |
+
dimension = embeddings.shape[1]
|
29 |
+
index = faiss.IndexFlatL2(dimension)
|
30 |
+
index.add(embeddings)
|
31 |
+
return index, model
|
32 |
+
|
33 |
+
# Load the QA model
|
34 |
+
def load_qa_model():
|
35 |
+
model_name = "deepset/roberta-base-squad2"
|
36 |
+
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
|
37 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
38 |
+
qa_pipeline = pipeline("question-answering", model=model, tokenizer=tokenizer)
|
39 |
+
return qa_pipeline
|
40 |
+
|
41 |
+
# Get technical analysis
|
42 |
+
def get_technical_analysis(df):
|
43 |
+
analysis = {
|
44 |
+
"SMA_50": df['Close'].rolling(window=50).mean().iloc[-1],
|
45 |
+
"SMA_200": df['Close'].rolling(window=200).mean().iloc[-1],
|
46 |
+
"RSI": df['momentum_rsi'].iloc[-1],
|
47 |
+
"MACD": df['trend_macd'].iloc[-1],
|
48 |
+
}
|
49 |
+
return analysis
|
50 |
+
|
51 |
+
# RAG-based QA function
|
52 |
+
def rag_qa(question, df, index, model, qa_pipeline):
|
53 |
+
query_embedding = model.encode([question])
|
54 |
+
distances, indices = index.search(query_embedding, k=1)
|
55 |
+
context = df.iloc[indices[0][0]]['Close']
|
56 |
+
result = qa_pipeline(question=question, context=str(context))
|
57 |
+
return result['answer']
|
58 |
+
|
59 |
+
# Gradio Interface
|
60 |
+
def trading_analysis_app(question):
|
61 |
+
df = load_data()
|
62 |
+
df = preprocess_data(df)
|
63 |
+
index, model = train_faiss_index(df)
|
64 |
+
qa_pipeline = load_qa_model()
|
65 |
+
|
66 |
+
analysis = get_technical_analysis(df)
|
67 |
+
answer = rag_qa(question, df, index, model, qa_pipeline)
|
68 |
+
|
69 |
+
return f"Technical Analysis: {analysis}\n\nAnswer: {answer}"
|
70 |
+
|
71 |
+
# Gradio Interface
|
72 |
+
iface = gr.Interface(
|
73 |
+
fn=trading_analysis_app,
|
74 |
+
inputs="text",
|
75 |
+
outputs="text",
|
76 |
+
title="RAG-based Trading Analysis",
|
77 |
+
description="Enter your question about ICICIBANK's stock to get technical analysis and answers."
|
78 |
+
)
|
79 |
+
|
80 |
+
iface.launch()
|