''' python scripts/gradio_demo.py ''' import sys import os workspace_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), "icedit")) if workspace_dir not in sys.path: sys.path.insert(0, workspace_dir) from diffusers import FluxFillPipeline import gradio as gr import numpy as np import torch import argparse import random import spaces from PIL import Image MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 1024 current_lora_scale = 1.0 parser = argparse.ArgumentParser() parser.add_argument("--port", type=int, default=7860, help="Port for the Gradio app") parser.add_argument("--output-dir", type=str, default="gradio_results", help="Directory to save the output image") parser.add_argument("--flux-path", type=str, default='black-forest-labs/flux.1-fill-dev', help="Path to the model") parser.add_argument("--lora-path", type=str, default='sanaka87/ICEdit-MoE-LoRA', help="Path to the LoRA weights") parser.add_argument("--enable-model-cpu-offload", action="store_true", help="Enable CPU offloading for the model") args = parser.parse_args() pipe = FluxFillPipeline.from_pretrained(args.flux_path, torch_dtype=torch.bfloat16) pipe.load_lora_weights(args.lora_path, adapter_name="icedit") pipe.set_adapters("icedit", 1.0) if args.enable_model_cpu_offload: pipe.enable_model_cpu_offload() else: pipe = pipe.to("cuda") @spaces.GPU def infer(edit_images, prompt, seed=666, randomize_seed=False, width=1024, height=1024, guidance_scale=50, num_inference_steps=28, lora_scale=1.0, progress=gr.Progress(track_tqdm=True) ): global current_lora_scale if lora_scale != current_lora_scale: print(f"\033[93m[INFO] LoRA scale changed from {current_lora_scale} to {lora_scale}, reloading LoRA weights\033[0m") pipe.set_adapters("icedit", lora_scale) current_lora_scale = lora_scale image = edit_images if image.size[0] != 512: print("\033[93m[WARNING] We can only deal with the case where the image's width is 512.\033[0m") new_width = 512 scale = new_width / image.size[0] new_height = int(image.size[1] * scale) new_height = (new_height // 8) * 8 image = image.resize((new_width, new_height)) print(f"\033[93m[WARNING] Resizing the image to {new_width} x {new_height}\033[0m") image = image.convert("RGB") width, height = image.size image = image.resize((512, int(512 * height / width))) combined_image = Image.new("RGB", (width * 2, height)) combined_image.paste(image, (0, 0)) mask_array = np.zeros((height, width * 2), dtype=np.uint8) mask_array[:, width:] = 255 mask = Image.fromarray(mask_array) instruction = f'A diptych with two side-by-side images of the same scene. On the right, the scene is exactly the same as on the left but {prompt}' if randomize_seed: seed = random.randint(0, MAX_SEED) output_image = pipe( prompt=instruction, image=combined_image, mask_image=mask, height=height, width=width*2, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, generator=torch.Generator().manual_seed(seed), ).images[0] w,h = output_image.size output_image = output_image.crop((w//2, 0, w, h)) os.makedirs(args.output_dir, exist_ok=True) index = len(os.listdir(args.output_dir)) output_image.save(f"{args.output_dir}/result_{index}.png") return (image, output_image), seed, lora_scale # 新增的示例,将元组转换为列表 new_examples = [ ['assets/girl_3.jpg', 'Make it looks like a watercolor painting.', 0, 0.5], ['assets/girl.png', 'Make her hair dark green and her clothes checked.', 42, 1.0], ['assets/boy.png', 'Change the sunglasses to a Christmas hat.', 27440001, 1.0], ['assets/kaori.jpg', 'Make it a sketch.', 329918865, 1.0] ] css = """ #col-container { margin: 0 auto; max-width: 1000px; } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(f"""# IC-Edit **Image Editing is worth a single LoRA!** A demo for [IC-Edit](https://river-zhang.github.io/ICEdit-gh-pages/). More **open-source**, with **lower costs**, **faster speed** (it takes about 9 seconds to process one image), and **powerful performance**. For more details, check out our [Github Repository](https://github.com/River-Zhang/ICEdit) and [arxiv paper](https://arxiv.org/pdf/2504.20690). If our project resonates with you or proves useful, we'd be truly grateful if you could spare a moment to give it a star. \n**👑 Feel free to share your results in this [Gallery](https://github.com/River-Zhang/ICEdit/discussions/21)!** \n🔥 New feature: Try **different LoRA scale**! """) with gr.Row(): with gr.Column(): edit_image = gr.Image( label='Upload image for editing', type='pil', sources=["upload", "webcam"], image_mode='RGB', height=600 ) prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Run") with gr.Column(): result = gr.ImageSlider(label="Result", show_label=False) gr.Markdown("⚠️ If your edit didn't work as desired, **try again with another seed** !
If you use our example, don't forget to uncheck the random seed option. Otherwise, it will still use a random seed.") with gr.Accordion("Advanced Settings", open=True): seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): width = gr.Slider( label="Width", minimum=512, maximum=MAX_IMAGE_SIZE, step=32, value=1024, visible=False ) height = gr.Slider( label="Height", minimum=512, maximum=MAX_IMAGE_SIZE, step=32, value=1024, visible=False ) with gr.Row(): guidance_scale = gr.Slider( label="Guidance Scale", minimum=1, maximum=100, step=0.5, value=50, ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=50, step=1, value=28, ) lora_scale = gr.Slider( label="LoRA Scale", minimum=0, maximum=1.0, step=0.01, value=1.0, ) gr.Examples( examples=new_examples, inputs=[edit_image, prompt, seed, lora_scale], outputs=[result, seed, lora_scale], fn=infer, cache_examples=False ) gr.on( triggers=[run_button.click, prompt.submit], fn=infer, inputs=[edit_image, prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, lora_scale], outputs=[result, seed, lora_scale] ) demo.launch(server_port=args.port)