Spaces:
Running
Running
File size: 5,459 Bytes
9a2edf3 4168c5d 9a2edf3 4168c5d 9a2edf3 4168c5d 9a2edf3 4168c5d 9a2edf3 4168c5d 9a2edf3 4168c5d 9a2edf3 4168c5d 9a2edf3 4168c5d 9a2edf3 4168c5d 9a2edf3 4168c5d 9a2edf3 4168c5d 9a2edf3 4168c5d 9a2edf3 4168c5d 9a2edf3 4168c5d 9a2edf3 4168c5d 9a2edf3 4168c5d 9a2edf3 4168c5d 9a2edf3 4168c5d 9a2edf3 4168c5d 9a2edf3 4168c5d 9a2edf3 4168c5d 9a2edf3 4168c5d 9a2edf3 4168c5d 9a2edf3 4168c5d 9a2edf3 4168c5d 9a2edf3 4168c5d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
import cv2
import torch
import numpy as np
from PIL import Image
import torchvision.transforms as transforms
from ultralytics import YOLO
import tempfile
import time
import os
import json
import gradio as gr
from fastapi import FastAPI, UploadFile, File, HTTPException
import uvicorn
# Initialize FastAPI
app = FastAPI()
# Global variable for face detections
largest_face_detections = []
# Load models
yolo_model_path = "yolov8n-face.pt"
emotion_model_path = "best_emotion_model.pth"
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Check if models exist
if os.path.exists(yolo_model_path):
yolo_model = YOLO(yolo_model_path)
else:
raise FileNotFoundError(f"YOLO model not found at {yolo_model_path}")
if os.path.exists(emotion_model_path):
from torch import nn
class EmotionCNN(nn.Module):
def __init__(self, num_classes=7):
super(EmotionCNN, self).__init__()
self.conv1 = nn.Sequential(nn.Conv2d(1, 64, kernel_size=3, padding=1),
nn.BatchNorm2d(64),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2))
self.fc = nn.Sequential(nn.Linear(64 * 24 * 24, 1024),
nn.ReLU(),
nn.Linear(1024, num_classes))
def forward(self, x):
x = self.conv1(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
emotion_model = EmotionCNN(num_classes=7)
checkpoint = torch.load(emotion_model_path, map_location=device)
emotion_model.load_state_dict(checkpoint['model_state_dict'])
emotion_model.to(device)
emotion_model.eval()
else:
raise FileNotFoundError(f"Emotion model not found at {emotion_model_path}")
# Emotion labels
emotions = ['Angry', 'Disgust', 'Fear', 'Happy', 'Sad', 'Surprise', 'Neutral']
def preprocess_face(face_img):
"""Preprocess face image for emotion detection"""
transform = transforms.Compose([
transforms.Resize((48, 48)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.5], std=[0.5])
])
face_img = Image.fromarray(cv2.cvtColor(face_img, cv2.COLOR_BGR2RGB)).convert('L')
face_tensor = transform(face_img).unsqueeze(0)
return face_tensor
def process_video(video_path: str):
"""Process video and return emotion results"""
global largest_face_detections
largest_face_detections = []
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
return {"success": False, "message": "Could not open video file"}
while True:
ret, frame = cap.read()
if not ret:
break
largest_face_area = 0
current_detection = None
results = yolo_model(frame, stream=True)
for result in results:
boxes = result.boxes
for box in boxes:
x1, y1, x2, y2 = map(int, box.xyxy[0].cpu().numpy())
face_img = frame[y1:y2, x1:x2]
if face_img.size == 0:
continue
face_tensor = preprocess_face(face_img).to(device)
with torch.no_grad():
output = emotion_model(face_tensor)
probabilities = torch.nn.functional.softmax(output, dim=1)
emotion_idx = torch.argmax(output, dim=1).item()
confidence = probabilities[0][emotion_idx].item()
emotion = emotions[emotion_idx]
if (x2 - x1) * (y2 - y1) > largest_face_area:
largest_face_area = (x2 - x1) * (y2 - y1)
current_detection = {"emotion": emotion, "confidence": confidence}
if current_detection:
largest_face_detections.append(current_detection)
cap.release()
if not largest_face_detections:
return {"success": True, "message": "No faces detected", "results": []}
return {
"success": True,
"message": "Video processed",
"results": largest_face_detections
}
@app.post("/api/video")
async def handle_video(file: UploadFile = File(...)):
"""API endpoint for video emotion detection"""
try:
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as tmp:
tmp.write(await file.read())
video_path = tmp.name
result = process_video(video_path)
os.remove(video_path)
return result
except Exception as e:
return {"success": False, "message": "Error processing video", "error": str(e)}
# Gradio UI
def gradio_process(video):
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as tmp:
tmp.write(video)
video_path = tmp.name
result = process_video(video_path)
os.remove(video_path)
return result
with gr.Blocks() as demo:
gr.Markdown("# Video Emotion Analysis")
with gr.Row():
with gr.Column():
video_input = gr.File(label="Upload a video", file_types=[".mp4"])
submit_btn = gr.Button("Analyze")
with gr.Column():
output = gr.JSON(label="Results")
submit_btn.click(fn=gradio_process, inputs=video_input, outputs=output)
app = gr.mount_gradio_app(app, demo, path="/")
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=7860)
|