# HackRx Insurance Policy Assistant A FastAPI application that processes PDF documents and answers questions using AI, deployed on Hugging Face Spaces. ## Features - PDF document parsing and text extraction - Vector-based document search using FAISS - AI-powered question answering using Google Gemini - RESTful API endpoints for document processing ## API Endpoints ### Health Check - `GET /` - Root endpoint - `GET /health` - API status check ### Process PDF from URL - `POST /api/v1/hackrx/run` - **Headers**: `Authorization: Bearer ` - **Body**: ```json { "documents": "https://example.com/document.pdf", "questions": ["What is the coverage amount?", "What are the exclusions?"] } ``` ### Process Local PDF File - `POST /api/v1/hackrx/local` - **Body**: ```json { "document_path": "/app/files/document.pdf", "questions": ["What is the coverage amount?", "What are the exclusions?"] } ``` ## Environment Variables Set these in your Hugging Face Space settings: - `GOOGLE_API_KEY` - Your Google Gemini API key ## Usage Examples ### Using curl ```bash # Health check curl https://your-space-name.hf.space/ # Process PDF from URL curl -X POST https://your-space-name.hf.space/api/v1/hackrx/run \ -H "Content-Type: application/json" \ -H "Authorization: Bearer your_token_here" \ -d '{ "documents": "https://example.com/insurance-policy.pdf", "questions": ["What is the coverage amount?", "What are the exclusions?"] }' ``` ### Using Python ```python import requests # Health check response = requests.get("https://your-space-name.hf.space/") print(response.json()) # Process PDF url = "https://your-space-name.hf.space/api/v1/hackrx/run" headers = { "Content-Type": "application/json", "Authorization": "Bearer your_token_here" } data = { "documents": "https://example.com/insurance-policy.pdf", "questions": ["What is the coverage amount?", "What are the exclusions?"] } response = requests.post(url, headers=headers, json=data) print(response.json()) ``` ## Local Development To run the application locally: ```bash pip install -r requirements.txt python app.py ``` The API will be available at `http://localhost:7860` ## Deployment This application is configured for deployment on Hugging Face Spaces using Docker. The following files are included: - `app.py` - Main application entry point - `Dockerfile` - Docker configuration - `.dockerignore` - Docker build optimization - `requirements.txt` - Python dependencies ## Model Information - **Framework**: FastAPI - **AI Model**: Google Gemini - **Vector Database**: FAISS - **Document Processing**: PyMuPDF