Spaces:
Runtime error
Runtime error
Commit
Β·
836bc0e
1
Parent(s):
6dd4fed
New Version Updated
Browse files- pdf_parser.py β Old_Files/pdf_parser.py +0 -0
- app.py +77 -66
- content_readers/__init__.py +52 -0
- content_readers/image_extractor.py +11 -0
- content_readers/pdf_extractor.py +42 -0
- content_readers/web_extractor.py +11 -0
- content_readers/zip_extractor.py +39 -0
- db_logger.py +47 -0
- embedder.py +1 -1
- requirements.txt +1 -0
- utils.py +10 -0
pdf_parser.py β Old_Files/pdf_parser.py
RENAMED
File without changes
|
app.py
CHANGED
@@ -4,7 +4,6 @@ import logging
|
|
4 |
import time
|
5 |
import json
|
6 |
import hashlib
|
7 |
-
from datetime import datetime
|
8 |
from concurrent.futures import ThreadPoolExecutor
|
9 |
from threading import Lock
|
10 |
import re
|
@@ -13,7 +12,6 @@ import re
|
|
13 |
cache_dir = os.path.join(os.getcwd(), ".cache")
|
14 |
os.makedirs(cache_dir, exist_ok=True)
|
15 |
os.environ['HF_HOME'] = cache_dir
|
16 |
-
os.environ['TRANSFORMERS_CACHE'] = cache_dir
|
17 |
|
18 |
# Suppress TensorFlow warnings
|
19 |
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
|
@@ -24,16 +22,41 @@ os.environ['TF_ENABLE_DEPRECATION_WARNINGS'] = '0'
|
|
24 |
warnings.filterwarnings('ignore', category=DeprecationWarning, module='tensorflow')
|
25 |
logging.getLogger('tensorflow').setLevel(logging.ERROR)
|
26 |
|
27 |
-
from fastapi import FastAPI, HTTPException, Depends, Header, Query
|
28 |
from fastapi.middleware.cors import CORSMiddleware
|
29 |
from pydantic import BaseModel
|
30 |
-
from
|
31 |
from embedder import build_faiss_index, preload_model
|
32 |
from retriever import retrieve_chunks
|
33 |
from llm import query_gemini
|
34 |
import uvicorn
|
|
|
35 |
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
app.add_middleware(
|
39 |
CORSMiddleware,
|
@@ -43,12 +66,6 @@ app.add_middleware(
|
|
43 |
allow_headers=["*"],
|
44 |
)
|
45 |
|
46 |
-
@app.on_event("startup")
|
47 |
-
async def startup_event():
|
48 |
-
print("Starting up HackRx Insurance Policy Assistant...")
|
49 |
-
print("Preloading sentence transformer model...")
|
50 |
-
preload_model()
|
51 |
-
print("Model preloading completed. API is ready to serve requests!")
|
52 |
|
53 |
@app.get("/")
|
54 |
async def root():
|
@@ -58,6 +75,7 @@ async def root():
|
|
58 |
async def health_check():
|
59 |
return {"status": "healthy"}
|
60 |
|
|
|
61 |
class QueryRequest(BaseModel):
|
62 |
documents: str
|
63 |
questions: list[str]
|
@@ -66,6 +84,7 @@ class LocalQueryRequest(BaseModel):
|
|
66 |
document_path: str
|
67 |
questions: list[str]
|
68 |
|
|
|
69 |
def verify_token(authorization: str = Header(None)):
|
70 |
if not authorization or not authorization.startswith("Bearer "):
|
71 |
raise HTTPException(status_code=401, detail="Invalid authorization header")
|
@@ -83,25 +102,17 @@ def get_document_id_from_url(url: str) -> str:
|
|
83 |
def question_has_https_link(q: str) -> bool:
|
84 |
return bool(re.search(r"https://[^\s]+", q))
|
85 |
|
|
|
86 |
# Document cache with thread safety
|
87 |
doc_cache = {}
|
88 |
doc_cache_lock = Lock()
|
89 |
|
90 |
-
|
91 |
@app.delete("/api/v1/cache/clear")
|
92 |
-
async def clear_cache(doc_id: str = Query(None
|
93 |
-
url: str = Query(None
|
94 |
-
doc_only: bool = Query(False
|
95 |
-
"""
|
96 |
-
Clear cache data.
|
97 |
-
- No params: Clears ALL caches.
|
98 |
-
- doc_id: Clears caches for that document only.
|
99 |
-
- url: Same as doc_id but computed automatically from URL.
|
100 |
-
- doc_only: Clears only document cache.
|
101 |
-
"""
|
102 |
cleared = {}
|
103 |
-
|
104 |
-
# If URL is provided, convert to doc_id
|
105 |
if url:
|
106 |
doc_id = get_document_id_from_url(url)
|
107 |
|
@@ -119,19 +130,20 @@ async def clear_cache(doc_id: str = Query(None, description="Optional document I
|
|
119 |
|
120 |
return {"status": "success", "cleared": cleared}
|
121 |
|
|
|
122 |
@app.post("/api/v1/hackrx/run")
|
123 |
-
async def run_query(request: QueryRequest, token: str = Depends(verify_token)):
|
124 |
start_time = time.time()
|
125 |
timing_data = {}
|
126 |
try:
|
|
|
|
|
|
|
127 |
print("=== INPUT JSON ===")
|
128 |
print(json.dumps({"documents": request.documents, "questions": request.questions}, indent=2))
|
129 |
print("==================\n")
|
130 |
|
131 |
-
|
132 |
-
|
133 |
-
# PDF Parsing and FAISS Caching (keep document caching for speed)
|
134 |
-
doc_id = get_document_id_from_url(request.documents)
|
135 |
with doc_cache_lock:
|
136 |
if doc_id in doc_cache:
|
137 |
print("β
Using cached document...")
|
@@ -142,7 +154,7 @@ async def run_query(request: QueryRequest, token: str = Depends(verify_token)):
|
|
142 |
else:
|
143 |
print("βοΈ Parsing and indexing new document...")
|
144 |
pdf_start = time.time()
|
145 |
-
text_chunks =
|
146 |
timing_data['pdf_parsing'] = round(time.time() - pdf_start, 2)
|
147 |
|
148 |
index_start = time.time()
|
@@ -155,18 +167,13 @@ async def run_query(request: QueryRequest, token: str = Depends(verify_token)):
|
|
155 |
"texts": texts
|
156 |
}
|
157 |
|
158 |
-
# Retrieve chunks for all questions β no QA caching
|
159 |
retrieval_start = time.time()
|
160 |
all_chunks = set()
|
161 |
-
question_positions = {}
|
162 |
for idx, question in enumerate(request.questions):
|
163 |
top_chunks = retrieve_chunks(index, texts, question)
|
164 |
all_chunks.update(top_chunks)
|
165 |
-
question_positions.setdefault(question, []).append(idx)
|
166 |
timing_data['chunk_retrieval'] = round(time.time() - retrieval_start, 2)
|
167 |
-
print(f"Retrieved {len(all_chunks)} unique chunks for all questions")
|
168 |
|
169 |
-
# Query Gemini LLM fresh for all questions
|
170 |
context_chunks = list(all_chunks)
|
171 |
batch_size = 10
|
172 |
batches = [(i, request.questions[i:i + batch_size]) for i in range(0, len(request.questions), batch_size)]
|
@@ -190,38 +197,41 @@ async def run_query(request: QueryRequest, token: str = Depends(verify_token)):
|
|
190 |
timing_data['llm_processing'] = round(time.time() - llm_start, 2)
|
191 |
|
192 |
responses = [results_dict.get(i, "Not Found") for i in range(len(request.questions))]
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
|
|
|
|
|
|
203 |
|
204 |
return {"answers": responses}
|
205 |
|
206 |
except Exception as e:
|
207 |
-
print(f"Error: {str(e)}")
|
208 |
raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")
|
209 |
|
|
|
210 |
@app.post("/api/v1/hackrx/local")
|
211 |
-
async def run_local_query(request: LocalQueryRequest):
|
212 |
start_time = time.time()
|
213 |
timing_data = {}
|
214 |
try:
|
|
|
|
|
|
|
215 |
print("=== INPUT JSON ===")
|
216 |
print(json.dumps({"document_path": request.document_path, "questions": request.questions}, indent=2))
|
217 |
print("==================\n")
|
218 |
|
219 |
-
print(f"Processing {len(request.questions)} questions locally...")
|
220 |
-
|
221 |
pdf_start = time.time()
|
222 |
-
text_chunks =
|
223 |
timing_data['pdf_parsing'] = round(time.time() - pdf_start, 2)
|
224 |
-
print(f"Extracted {len(text_chunks)} text chunks from PDF")
|
225 |
|
226 |
index_start = time.time()
|
227 |
index, texts = build_faiss_index(text_chunks)
|
@@ -233,12 +243,10 @@ async def run_local_query(request: LocalQueryRequest):
|
|
233 |
top_chunks = retrieve_chunks(index, texts, question)
|
234 |
all_chunks.update(top_chunks)
|
235 |
timing_data['chunk_retrieval'] = round(time.time() - retrieval_start, 2)
|
236 |
-
print(f"Retrieved {len(all_chunks)} unique chunks")
|
237 |
|
238 |
-
questions = request.questions
|
239 |
context_chunks = list(all_chunks)
|
240 |
batch_size = 20
|
241 |
-
batches = [(i, questions[i:i + batch_size]) for i in range(0, len(questions), batch_size)]
|
242 |
|
243 |
llm_start = time.time()
|
244 |
results_dict = {}
|
@@ -258,24 +266,27 @@ async def run_local_query(request: LocalQueryRequest):
|
|
258 |
results_dict[start_idx + j] = f"Error: {str(e)}"
|
259 |
timing_data['llm_processing'] = round(time.time() - llm_start, 2)
|
260 |
|
261 |
-
responses = [results_dict.get(i, "Not Found") for i in range(len(questions))]
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
|
|
|
|
|
|
272 |
|
273 |
return {"answers": responses}
|
274 |
|
275 |
except Exception as e:
|
276 |
-
print(f"Error: {str(e)}")
|
277 |
raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")
|
278 |
|
|
|
279 |
if __name__ == "__main__":
|
280 |
port = int(os.environ.get("PORT", 7860))
|
281 |
uvicorn.run("app:app", host="0.0.0.0", port=port)
|
|
|
4 |
import time
|
5 |
import json
|
6 |
import hashlib
|
|
|
7 |
from concurrent.futures import ThreadPoolExecutor
|
8 |
from threading import Lock
|
9 |
import re
|
|
|
12 |
cache_dir = os.path.join(os.getcwd(), ".cache")
|
13 |
os.makedirs(cache_dir, exist_ok=True)
|
14 |
os.environ['HF_HOME'] = cache_dir
|
|
|
15 |
|
16 |
# Suppress TensorFlow warnings
|
17 |
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
|
|
|
22 |
warnings.filterwarnings('ignore', category=DeprecationWarning, module='tensorflow')
|
23 |
logging.getLogger('tensorflow').setLevel(logging.ERROR)
|
24 |
|
25 |
+
from fastapi import FastAPI, HTTPException, Depends, Header, Query, Request
|
26 |
from fastapi.middleware.cors import CORSMiddleware
|
27 |
from pydantic import BaseModel
|
28 |
+
from content_readers import parse_document_url, parse_document_file
|
29 |
from embedder import build_faiss_index, preload_model
|
30 |
from retriever import retrieve_chunks
|
31 |
from llm import query_gemini
|
32 |
import uvicorn
|
33 |
+
from contextlib import asynccontextmanager
|
34 |
|
35 |
+
# Import Supabase logger
|
36 |
+
from db_logger import log_query
|
37 |
+
|
38 |
+
|
39 |
+
# Helper to get real client IP
|
40 |
+
def get_client_ip(request: Request):
|
41 |
+
forwarded_for = request.headers.get("x-forwarded-for")
|
42 |
+
if forwarded_for:
|
43 |
+
return forwarded_for.split(",")[0].strip()
|
44 |
+
real_ip = request.headers.get("x-real-ip")
|
45 |
+
if real_ip:
|
46 |
+
return real_ip
|
47 |
+
return request.client.host
|
48 |
+
|
49 |
+
|
50 |
+
@asynccontextmanager
|
51 |
+
async def lifespan(app: FastAPI):
|
52 |
+
print("Starting up HackRx Insurance Policy Assistant...")
|
53 |
+
print("Preloading sentence transformer model...")
|
54 |
+
preload_model()
|
55 |
+
print("Model preloading completed. API is ready to serve requests!")
|
56 |
+
yield
|
57 |
+
|
58 |
+
|
59 |
+
app = FastAPI(title="HackRx Insurance Policy Assistant", version="3.2.6", lifespan=lifespan)
|
60 |
|
61 |
app.add_middleware(
|
62 |
CORSMiddleware,
|
|
|
66 |
allow_headers=["*"],
|
67 |
)
|
68 |
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
@app.get("/")
|
71 |
async def root():
|
|
|
75 |
async def health_check():
|
76 |
return {"status": "healthy"}
|
77 |
|
78 |
+
|
79 |
class QueryRequest(BaseModel):
|
80 |
documents: str
|
81 |
questions: list[str]
|
|
|
84 |
document_path: str
|
85 |
questions: list[str]
|
86 |
|
87 |
+
|
88 |
def verify_token(authorization: str = Header(None)):
|
89 |
if not authorization or not authorization.startswith("Bearer "):
|
90 |
raise HTTPException(status_code=401, detail="Invalid authorization header")
|
|
|
102 |
def question_has_https_link(q: str) -> bool:
|
103 |
return bool(re.search(r"https://[^\s]+", q))
|
104 |
|
105 |
+
|
106 |
# Document cache with thread safety
|
107 |
doc_cache = {}
|
108 |
doc_cache_lock = Lock()
|
109 |
|
110 |
+
|
111 |
@app.delete("/api/v1/cache/clear")
|
112 |
+
async def clear_cache(doc_id: str = Query(None),
|
113 |
+
url: str = Query(None),
|
114 |
+
doc_only: bool = Query(False)):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
cleared = {}
|
|
|
|
|
116 |
if url:
|
117 |
doc_id = get_document_id_from_url(url)
|
118 |
|
|
|
130 |
|
131 |
return {"status": "success", "cleared": cleared}
|
132 |
|
133 |
+
|
134 |
@app.post("/api/v1/hackrx/run")
|
135 |
+
async def run_query(request: QueryRequest, fastapi_request: Request, token: str = Depends(verify_token)):
|
136 |
start_time = time.time()
|
137 |
timing_data = {}
|
138 |
try:
|
139 |
+
user_ip = get_client_ip(fastapi_request)
|
140 |
+
user_agent = fastapi_request.headers.get("user-agent", "Unknown")
|
141 |
+
|
142 |
print("=== INPUT JSON ===")
|
143 |
print(json.dumps({"documents": request.documents, "questions": request.questions}, indent=2))
|
144 |
print("==================\n")
|
145 |
|
146 |
+
doc_id = get_document_id_from_url(request.documents or "")
|
|
|
|
|
|
|
147 |
with doc_cache_lock:
|
148 |
if doc_id in doc_cache:
|
149 |
print("β
Using cached document...")
|
|
|
154 |
else:
|
155 |
print("βοΈ Parsing and indexing new document...")
|
156 |
pdf_start = time.time()
|
157 |
+
text_chunks = parse_document_url(request.documents)
|
158 |
timing_data['pdf_parsing'] = round(time.time() - pdf_start, 2)
|
159 |
|
160 |
index_start = time.time()
|
|
|
167 |
"texts": texts
|
168 |
}
|
169 |
|
|
|
170 |
retrieval_start = time.time()
|
171 |
all_chunks = set()
|
|
|
172 |
for idx, question in enumerate(request.questions):
|
173 |
top_chunks = retrieve_chunks(index, texts, question)
|
174 |
all_chunks.update(top_chunks)
|
|
|
175 |
timing_data['chunk_retrieval'] = round(time.time() - retrieval_start, 2)
|
|
|
176 |
|
|
|
177 |
context_chunks = list(all_chunks)
|
178 |
batch_size = 10
|
179 |
batches = [(i, request.questions[i:i + batch_size]) for i in range(0, len(request.questions), batch_size)]
|
|
|
197 |
timing_data['llm_processing'] = round(time.time() - llm_start, 2)
|
198 |
|
199 |
responses = [results_dict.get(i, "Not Found") for i in range(len(request.questions))]
|
200 |
+
total_time = time.time() - start_time
|
201 |
+
timing_data['total_time'] = round(total_time, 2)
|
202 |
+
|
203 |
+
# Log to Supabase with user_agent + geo_location
|
204 |
+
for q, a in zip(request.questions, responses):
|
205 |
+
log_query(
|
206 |
+
document_source=request.documents or "UNKNOWN",
|
207 |
+
question=q,
|
208 |
+
answer=a,
|
209 |
+
ip_address=user_ip,
|
210 |
+
user_agent=user_agent,
|
211 |
+
response_time=total_time
|
212 |
+
)
|
213 |
|
214 |
return {"answers": responses}
|
215 |
|
216 |
except Exception as e:
|
|
|
217 |
raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")
|
218 |
|
219 |
+
|
220 |
@app.post("/api/v1/hackrx/local")
|
221 |
+
async def run_local_query(request: LocalQueryRequest, fastapi_request: Request):
|
222 |
start_time = time.time()
|
223 |
timing_data = {}
|
224 |
try:
|
225 |
+
user_ip = get_client_ip(fastapi_request)
|
226 |
+
user_agent = fastapi_request.headers.get("user-agent", "Unknown")
|
227 |
+
|
228 |
print("=== INPUT JSON ===")
|
229 |
print(json.dumps({"document_path": request.document_path, "questions": request.questions}, indent=2))
|
230 |
print("==================\n")
|
231 |
|
|
|
|
|
232 |
pdf_start = time.time()
|
233 |
+
text_chunks = parse_document_file(request.document_path)
|
234 |
timing_data['pdf_parsing'] = round(time.time() - pdf_start, 2)
|
|
|
235 |
|
236 |
index_start = time.time()
|
237 |
index, texts = build_faiss_index(text_chunks)
|
|
|
243 |
top_chunks = retrieve_chunks(index, texts, question)
|
244 |
all_chunks.update(top_chunks)
|
245 |
timing_data['chunk_retrieval'] = round(time.time() - retrieval_start, 2)
|
|
|
246 |
|
|
|
247 |
context_chunks = list(all_chunks)
|
248 |
batch_size = 20
|
249 |
+
batches = [(i, request.questions[i:i + batch_size]) for i in range(0, len(request.questions), batch_size)]
|
250 |
|
251 |
llm_start = time.time()
|
252 |
results_dict = {}
|
|
|
266 |
results_dict[start_idx + j] = f"Error: {str(e)}"
|
267 |
timing_data['llm_processing'] = round(time.time() - llm_start, 2)
|
268 |
|
269 |
+
responses = [results_dict.get(i, "Not Found") for i in range(len(request.questions))]
|
270 |
+
total_time = time.time() - start_time
|
271 |
+
timing_data['total_time'] = round(total_time, 2)
|
272 |
+
|
273 |
+
# Log to Supabase with user_agent + geo_location
|
274 |
+
for q, a in zip(request.questions, responses):
|
275 |
+
log_query(
|
276 |
+
document_source=request.document_path or "UNKNOWN",
|
277 |
+
question=q,
|
278 |
+
answer=a,
|
279 |
+
ip_address=user_ip,
|
280 |
+
user_agent=user_agent,
|
281 |
+
response_time=total_time
|
282 |
+
)
|
283 |
|
284 |
return {"answers": responses}
|
285 |
|
286 |
except Exception as e:
|
|
|
287 |
raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")
|
288 |
|
289 |
+
|
290 |
if __name__ == "__main__":
|
291 |
port = int(os.environ.get("PORT", 7860))
|
292 |
uvicorn.run("app:app", host="0.0.0.0", port=port)
|
content_readers/__init__.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from io import BytesIO
|
2 |
+
import requests
|
3 |
+
import os
|
4 |
+
from .pdf_extractor import parse_pdf_from_url_multithreaded, parse_pdf_from_file_multithreaded
|
5 |
+
from .image_extractor import is_image, extract_text_from_image_bytes
|
6 |
+
from .web_extractor import extract_text_from_html
|
7 |
+
from .zip_extractor import extract_from_zip_bytes
|
8 |
+
|
9 |
+
def parse_document_url(url):
|
10 |
+
try:
|
11 |
+
res = requests.get(url)
|
12 |
+
content = res.content
|
13 |
+
content_type = res.headers.get("content-type", "").lower()
|
14 |
+
except Exception as e:
|
15 |
+
return [f"Download error: {str(e)}"]
|
16 |
+
|
17 |
+
if "text/html" in content_type or url.endswith(".html"):
|
18 |
+
return extract_text_from_html(content)
|
19 |
+
|
20 |
+
if "zip" in content_type or url.endswith(".zip"):
|
21 |
+
zip_results = extract_from_zip_bytes(content)
|
22 |
+
return [f"{name}: {text}" for name, texts in zip_results.items() for text in texts]
|
23 |
+
|
24 |
+
if "image" in content_type or is_image(content):
|
25 |
+
text = extract_text_from_image_bytes(content)
|
26 |
+
return [text] if text else ["No data found (image empty)"]
|
27 |
+
|
28 |
+
if "pdf" in content_type or url.endswith(".pdf"):
|
29 |
+
return parse_pdf_from_url_multithreaded(BytesIO(content))
|
30 |
+
|
31 |
+
return ["Unsupported file type"]
|
32 |
+
|
33 |
+
def parse_document_file(file_path):
|
34 |
+
if file_path.lower().endswith(".zip"):
|
35 |
+
with open(file_path, "rb") as f:
|
36 |
+
zip_results = extract_from_zip_bytes(f.read())
|
37 |
+
return [f"{name}: {text}" for name, texts in zip_results.items() for text in texts]
|
38 |
+
|
39 |
+
if file_path.lower().endswith((".png", ".jpg", ".jpeg", ".bmp", ".gif", ".tiff", ".webp")):
|
40 |
+
with open(file_path, "rb") as f:
|
41 |
+
text = extract_text_from_image_bytes(f.read())
|
42 |
+
return [text] if text else ["No data found (image empty)"]
|
43 |
+
|
44 |
+
if file_path.lower().endswith(".pdf"):
|
45 |
+
return parse_pdf_from_file_multithreaded(file_path)
|
46 |
+
|
47 |
+
if file_path.lower().endswith(".html"):
|
48 |
+
with open(file_path, "r", encoding="utf-8") as f:
|
49 |
+
content = f.read()
|
50 |
+
return extract_text_from_html(content)
|
51 |
+
|
52 |
+
return ["Unsupported file type"]
|
content_readers/image_extractor.py
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import imghdr
|
2 |
+
from PIL import Image
|
3 |
+
import pytesseract
|
4 |
+
from io import BytesIO
|
5 |
+
|
6 |
+
def is_image(content):
|
7 |
+
return imghdr.what(None, h=content) in ["jpeg", "png", "bmp", "gif", "tiff", "webp"]
|
8 |
+
|
9 |
+
def extract_text_from_image_bytes(image_bytes):
|
10 |
+
image = Image.open(BytesIO(image_bytes))
|
11 |
+
return pytesseract.image_to_string(image).strip()
|
content_readers/pdf_extractor.py
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import fitz # PyMuPDF
|
2 |
+
from concurrent.futures import ThreadPoolExecutor
|
3 |
+
|
4 |
+
def _extract_text(page):
|
5 |
+
text = page.get_text()
|
6 |
+
return text.strip() if text and text.strip() else None
|
7 |
+
|
8 |
+
def parse_pdf_from_url_multithreaded(content, max_workers=2, chunk_size=1):
|
9 |
+
try:
|
10 |
+
with fitz.open(stream=content, filetype="pdf") as doc:
|
11 |
+
pages = list(doc)
|
12 |
+
with ThreadPoolExecutor(max_workers=max_workers) as executor:
|
13 |
+
texts = list(executor.map(_extract_text, pages))
|
14 |
+
if chunk_size > 1:
|
15 |
+
chunks = []
|
16 |
+
for i in range(0, len(texts), chunk_size):
|
17 |
+
chunk = ' '.join([t for t in texts[i:i+chunk_size] if t])
|
18 |
+
if chunk:
|
19 |
+
chunks.append(chunk)
|
20 |
+
return chunks if chunks else ["No data found in this document (empty PDF)"]
|
21 |
+
return [t for t in texts if t] or ["No data found in this document (empty PDF)"]
|
22 |
+
except Exception as e:
|
23 |
+
print(f"β Failed to parse as PDF: {str(e)}")
|
24 |
+
return [f"No data found in this document (not PDF or corrupted)"]
|
25 |
+
|
26 |
+
def parse_pdf_from_file_multithreaded(file_path, max_workers=2, chunk_size=1):
|
27 |
+
try:
|
28 |
+
with fitz.open(file_path) as doc:
|
29 |
+
pages = list(doc)
|
30 |
+
with ThreadPoolExecutor(max_workers=max_workers) as executor:
|
31 |
+
texts = list(executor.map(_extract_text, pages))
|
32 |
+
if chunk_size > 1:
|
33 |
+
chunks = []
|
34 |
+
for i in range(0, len(texts), chunk_size):
|
35 |
+
chunk = ' '.join([t for t in texts[i:i+chunk_size] if t])
|
36 |
+
if chunk:
|
37 |
+
chunks.append(chunk)
|
38 |
+
return chunks if chunks else ["No data found in this document (local PDF empty)"]
|
39 |
+
return [t for t in texts if t] or ["No data found in this document (local PDF empty)"]
|
40 |
+
except Exception as e:
|
41 |
+
print(f"β Failed to open local file: {str(e)}")
|
42 |
+
return [f"No data found in this document (local file error)"]
|
content_readers/web_extractor.py
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from bs4 import BeautifulSoup
|
2 |
+
|
3 |
+
def extract_text_from_html(content):
|
4 |
+
try:
|
5 |
+
soup = BeautifulSoup(content, "html.parser")
|
6 |
+
text = soup.get_text(separator="\n")
|
7 |
+
lines = [t.strip() for t in text.splitlines() if t.strip()]
|
8 |
+
return lines if lines else ["No data found in this document (empty HTML)"]
|
9 |
+
except Exception as e:
|
10 |
+
print(f"β HTML parse failed: {str(e)}")
|
11 |
+
return [f"No data found in this document (HTML error)"]
|
content_readers/zip_extractor.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import zipfile
|
2 |
+
from io import BytesIO
|
3 |
+
from .pdf_extractor import parse_pdf_from_url_multithreaded
|
4 |
+
from .image_extractor import is_image, extract_text_from_image_bytes
|
5 |
+
|
6 |
+
def extract_from_zip_bytes(zip_bytes):
|
7 |
+
"""
|
8 |
+
Extract and process files inside a ZIP archive.
|
9 |
+
Returns a dictionary: {filename: extracted_text_list}
|
10 |
+
"""
|
11 |
+
results = {}
|
12 |
+
try:
|
13 |
+
with zipfile.ZipFile(BytesIO(zip_bytes)) as z:
|
14 |
+
for file_name in z.namelist():
|
15 |
+
try:
|
16 |
+
file_data = z.read(file_name)
|
17 |
+
except Exception as e:
|
18 |
+
results[file_name] = [f"β Failed to read file: {e}"]
|
19 |
+
continue
|
20 |
+
|
21 |
+
# PDF files
|
22 |
+
if file_name.lower().endswith(".pdf"):
|
23 |
+
results[file_name] = parse_pdf_from_url_multithreaded(BytesIO(file_data))
|
24 |
+
|
25 |
+
# Image files
|
26 |
+
elif is_image(file_data):
|
27 |
+
text = extract_text_from_image_bytes(file_data)
|
28 |
+
results[file_name] = [text] if text else ["No data found (image empty)"]
|
29 |
+
|
30 |
+
# Unsupported files
|
31 |
+
else:
|
32 |
+
results[file_name] = ["β Unsupported file type inside ZIP"]
|
33 |
+
|
34 |
+
return results if results else {"ZIP": ["No supported files found in archive"]}
|
35 |
+
|
36 |
+
except zipfile.BadZipFile:
|
37 |
+
return {"ZIP": ["Invalid or corrupted ZIP file"]}
|
38 |
+
except Exception as e:
|
39 |
+
return {"ZIP": [f"Error processing ZIP: {e}"]}
|
db_logger.py
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from datetime import datetime
|
3 |
+
from supabase import create_client, Client
|
4 |
+
import requests
|
5 |
+
|
6 |
+
SUPABASE_URL = os.getenv("SUPABASE_URL")
|
7 |
+
SUPABASE_KEY = os.getenv("SUPABASE_KEY")
|
8 |
+
|
9 |
+
supabase: Client = create_client(SUPABASE_URL, SUPABASE_KEY)
|
10 |
+
|
11 |
+
def get_geo_location(ip: str) -> str:
|
12 |
+
"""
|
13 |
+
Fetch approximate geo-location for the given IP address.
|
14 |
+
Returns 'Unknown' if lookup fails.
|
15 |
+
"""
|
16 |
+
try:
|
17 |
+
if ip.startswith("127.") or ip == "localhost":
|
18 |
+
return "Localhost"
|
19 |
+
resp = requests.get(f"https://ipapi.co/{ip}/country_name/", timeout=3)
|
20 |
+
if resp.status_code == 200:
|
21 |
+
return resp.text.strip() or "Unknown"
|
22 |
+
except Exception:
|
23 |
+
pass
|
24 |
+
return "Unknown"
|
25 |
+
|
26 |
+
def log_query(document_source: str, question: str, answer: str,
|
27 |
+
ip_address: str, response_time: float,
|
28 |
+
user_agent: str = None):
|
29 |
+
"""
|
30 |
+
Store a question-answer log in Supabase with geo-location and user-agent.
|
31 |
+
"""
|
32 |
+
now_str = datetime.utcnow().isoformat()
|
33 |
+
geo_location = get_geo_location(ip_address)
|
34 |
+
|
35 |
+
try:
|
36 |
+
supabase.table("qa_logs").insert({
|
37 |
+
"document_source": document_source,
|
38 |
+
"question": question,
|
39 |
+
"answer": answer,
|
40 |
+
"ip_address": ip_address,
|
41 |
+
"geo_location": geo_location,
|
42 |
+
"user_agent": user_agent or "Unknown",
|
43 |
+
"response_time_sec": round(response_time, 2),
|
44 |
+
"created_at": now_str
|
45 |
+
}).execute()
|
46 |
+
except Exception as e:
|
47 |
+
print(f"Failed to log query to Supabase: {e}")
|
embedder.py
CHANGED
@@ -24,7 +24,7 @@ def preload_model(model_name="paraphrase-MiniLM-L3-v2"):
|
|
24 |
print(f"Trying fallback: {fallback_name}")
|
25 |
_model = SentenceTransformer(fallback_name, cache_folder=cache_dir)
|
26 |
|
27 |
-
print("
|
28 |
return _model
|
29 |
|
30 |
def get_model():
|
|
|
24 |
print(f"Trying fallback: {fallback_name}")
|
25 |
_model = SentenceTransformer(fallback_name, cache_folder=cache_dir)
|
26 |
|
27 |
+
print(" π Model ready.")
|
28 |
return _model
|
29 |
|
30 |
def get_model():
|
requirements.txt
CHANGED
@@ -10,3 +10,4 @@ google-generativeai
|
|
10 |
pytesseract
|
11 |
Pillow
|
12 |
beautifulsoup4
|
|
|
|
10 |
pytesseract
|
11 |
Pillow
|
12 |
beautifulsoup4
|
13 |
+
supabase
|
utils.py
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import Request
|
2 |
+
|
3 |
+
def get_client_ip(request: Request):
|
4 |
+
forwarded_for = request.headers.get("x-forwarded-for")
|
5 |
+
if forwarded_for:
|
6 |
+
return forwarded_for.split(",")[0].strip()
|
7 |
+
real_ip = request.headers.get("x-real-ip")
|
8 |
+
if real_ip:
|
9 |
+
return real_ip
|
10 |
+
return request.client.host
|