Update app.py
Browse files
app.py
CHANGED
|
@@ -1,72 +1,72 @@
|
|
| 1 |
-
import gradio as gr
|
| 2 |
-
from transformers import pipeline
|
| 3 |
-
import numpy as np
|
| 4 |
-
import librosa
|
| 5 |
-
import pandas as pd
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
MODEL_NAME = "openai/whisper-
|
| 9 |
-
BATCH_SIZE = 8
|
| 10 |
-
# device = 0 if torch.cuda.is_available() else "cpu"
|
| 11 |
-
|
| 12 |
-
pipe = pipeline(
|
| 13 |
-
task="automatic-speech-recognition",
|
| 14 |
-
model=MODEL_NAME,
|
| 15 |
-
chunk_length_s=30,
|
| 16 |
-
# device=device,
|
| 17 |
-
)
|
| 18 |
-
|
| 19 |
-
# eng_classifier = pipeline("text-classification", model="Hate-speech-CNERG/bert-base-uncased-hatexplain")
|
| 20 |
-
|
| 21 |
-
def format_output_to_list(data):
|
| 22 |
-
formatted_list = "\n".join([f"{item['timestamp'][0]}s - {item['timestamp'][1]}s \t : {item['text']}" for item in data])
|
| 23 |
-
return formatted_list
|
| 24 |
-
|
| 25 |
-
def transcribe(inputs, task):
|
| 26 |
-
if inputs is None:
|
| 27 |
-
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
|
| 28 |
-
|
| 29 |
-
output = pipe(inputs, batch_size=BATCH_SIZE, return_timestamps="word", generate_kwargs={"task": task})
|
| 30 |
-
text = output['text']
|
| 31 |
-
timestamps = format_output_to_list(output['chunks'])
|
| 32 |
-
return [text, timestamps]
|
| 33 |
-
|
| 34 |
-
examples = [
|
| 35 |
-
["arabic_english_audios/audios/arabic_audio_1.wav"],
|
| 36 |
-
["arabic_english_audios/audios/arabic_audio_2.wav"],
|
| 37 |
-
["arabic_english_audios/audios/arabic_audio_3.wav"],
|
| 38 |
-
["arabic_english_audios/audios/arabic_audio_4.wav"],
|
| 39 |
-
["arabic_english_audios/audios/arabic_hate_audio_1.mp3"],
|
| 40 |
-
["arabic_english_audios/audios/arabic_hate_audio_2.mp3"],
|
| 41 |
-
["arabic_english_audios/audios/arabic_hate_audio_3.mp3"],
|
| 42 |
-
["arabic_english_audios/audios/english_audio_1.wav"],
|
| 43 |
-
["arabic_english_audios/audios/english_audio_2.mp3"],
|
| 44 |
-
["arabic_english_audios/audios/english_audio_3.mp3"],
|
| 45 |
-
["arabic_english_audios/audios/english_audio_4.mp3"],
|
| 46 |
-
["arabic_english_audios/audios/english_audio_5.mp3"],
|
| 47 |
-
["arabic_english_audios/audios/english_audio_6.wav"]
|
| 48 |
-
]
|
| 49 |
-
|
| 50 |
-
with gr.Blocks(theme=gr.themes.Default()) as demo:
|
| 51 |
-
gr.HTML("<h1 style='text-align: center;'>Transcribe Audio with Timestamps using whisper-large-v3</h1>")
|
| 52 |
-
gr.Markdown("")
|
| 53 |
-
with gr.Row():
|
| 54 |
-
with gr.Column():
|
| 55 |
-
audio_input = gr.Audio(sources=["upload", 'microphone'], type="filepath", label="Audio file")
|
| 56 |
-
task = gr.Radio(["transcribe", "translate"], label="Task")
|
| 57 |
-
with gr.Row():
|
| 58 |
-
clear_button = gr.ClearButton(value="Clear")
|
| 59 |
-
submit_button = gr.Button("Submit", variant="primary", )
|
| 60 |
-
|
| 61 |
-
with gr.Column():
|
| 62 |
-
transcript_output = gr.Text(label="Transcript")
|
| 63 |
-
timestamp_output = gr.Text(label="Timestamp")
|
| 64 |
-
|
| 65 |
-
examples = gr.Examples(examples, inputs=audio_input, outputs=[transcript_output, timestamp_output], fn=transcribe, examples_per_page=20)
|
| 66 |
-
|
| 67 |
-
submit_button.click(fn=transcribe, inputs=audio_input, outputs=[transcript_output, timestamp_output])
|
| 68 |
-
clear_button.add([audio_input, transcript_output, timestamp_output])
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
if __name__ == "__main__":
|
| 72 |
-
demo.launch()
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from transformers import pipeline
|
| 3 |
+
import numpy as np
|
| 4 |
+
import librosa
|
| 5 |
+
import pandas as pd
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
MODEL_NAME = "openai/whisper-large-v3"
|
| 9 |
+
BATCH_SIZE = 8
|
| 10 |
+
# device = 0 if torch.cuda.is_available() else "cpu"
|
| 11 |
+
|
| 12 |
+
pipe = pipeline(
|
| 13 |
+
task="automatic-speech-recognition",
|
| 14 |
+
model=MODEL_NAME,
|
| 15 |
+
chunk_length_s=30,
|
| 16 |
+
# device=device,
|
| 17 |
+
)
|
| 18 |
+
|
| 19 |
+
# eng_classifier = pipeline("text-classification", model="Hate-speech-CNERG/bert-base-uncased-hatexplain")
|
| 20 |
+
|
| 21 |
+
def format_output_to_list(data):
|
| 22 |
+
formatted_list = "\n".join([f"{item['timestamp'][0]}s - {item['timestamp'][1]}s \t : {item['text']}" for item in data])
|
| 23 |
+
return formatted_list
|
| 24 |
+
|
| 25 |
+
def transcribe(inputs, task):
|
| 26 |
+
if inputs is None:
|
| 27 |
+
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
|
| 28 |
+
|
| 29 |
+
output = pipe(inputs, batch_size=BATCH_SIZE, return_timestamps="word", generate_kwargs={"task": task})
|
| 30 |
+
text = output['text']
|
| 31 |
+
timestamps = format_output_to_list(output['chunks'])
|
| 32 |
+
return [text, timestamps]
|
| 33 |
+
|
| 34 |
+
examples = [
|
| 35 |
+
["arabic_english_audios/audios/arabic_audio_1.wav"],
|
| 36 |
+
["arabic_english_audios/audios/arabic_audio_2.wav"],
|
| 37 |
+
["arabic_english_audios/audios/arabic_audio_3.wav"],
|
| 38 |
+
["arabic_english_audios/audios/arabic_audio_4.wav"],
|
| 39 |
+
["arabic_english_audios/audios/arabic_hate_audio_1.mp3"],
|
| 40 |
+
["arabic_english_audios/audios/arabic_hate_audio_2.mp3"],
|
| 41 |
+
["arabic_english_audios/audios/arabic_hate_audio_3.mp3"],
|
| 42 |
+
["arabic_english_audios/audios/english_audio_1.wav"],
|
| 43 |
+
["arabic_english_audios/audios/english_audio_2.mp3"],
|
| 44 |
+
["arabic_english_audios/audios/english_audio_3.mp3"],
|
| 45 |
+
["arabic_english_audios/audios/english_audio_4.mp3"],
|
| 46 |
+
["arabic_english_audios/audios/english_audio_5.mp3"],
|
| 47 |
+
["arabic_english_audios/audios/english_audio_6.wav"]
|
| 48 |
+
]
|
| 49 |
+
|
| 50 |
+
with gr.Blocks(theme=gr.themes.Default()) as demo:
|
| 51 |
+
gr.HTML("<h1 style='text-align: center;'>Transcribe Audio with Timestamps using whisper-large-v3</h1>")
|
| 52 |
+
gr.Markdown("")
|
| 53 |
+
with gr.Row():
|
| 54 |
+
with gr.Column():
|
| 55 |
+
audio_input = gr.Audio(sources=["upload", 'microphone'], type="filepath", label="Audio file")
|
| 56 |
+
task = gr.Radio(["transcribe", "translate"], label="Task")
|
| 57 |
+
with gr.Row():
|
| 58 |
+
clear_button = gr.ClearButton(value="Clear")
|
| 59 |
+
submit_button = gr.Button("Submit", variant="primary", )
|
| 60 |
+
|
| 61 |
+
with gr.Column():
|
| 62 |
+
transcript_output = gr.Text(label="Transcript")
|
| 63 |
+
timestamp_output = gr.Text(label="Timestamp")
|
| 64 |
+
|
| 65 |
+
examples = gr.Examples(examples, inputs=audio_input, outputs=[transcript_output, timestamp_output], fn=transcribe, examples_per_page=20)
|
| 66 |
+
|
| 67 |
+
submit_button.click(fn=transcribe, inputs=audio_input, outputs=[transcript_output, timestamp_output])
|
| 68 |
+
clear_button.add([audio_input, transcript_output, timestamp_output])
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
if __name__ == "__main__":
|
| 72 |
+
demo.launch()
|