Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -1,47 +1,52 @@
|
|
1 |
-
from fastapi import FastAPI, UploadFile, Form
|
2 |
-
from PIL import Image
|
3 |
-
from gui_actor.modeling import Qwen2VLForConditionalGenerationWithPointer
|
4 |
-
from transformers import Qwen2VLProcessor
|
5 |
-
from gui_actor.inference import inference
|
6 |
-
import torch
|
7 |
-
import io
|
8 |
-
|
9 |
-
app = FastAPI()
|
10 |
-
|
11 |
-
# Load model + processor at startup
|
12 |
-
MODEL_NAME = "microsoft/GUI-Actor-2B-Qwen2-VL"
|
13 |
-
processor = Qwen2VLProcessor.from_pretrained(MODEL_NAME)
|
14 |
-
tokenizer = processor.tokenizer
|
15 |
-
model = Qwen2VLForConditionalGenerationWithPointer.from_pretrained(
|
16 |
-
MODEL_NAME,
|
17 |
-
torch_dtype=torch.float32,
|
18 |
-
device_map="auto"
|
19 |
-
).eval()
|
20 |
-
|
21 |
-
@app.get("/")
|
22 |
-
def home():
|
23 |
-
return {"message": "GUI-Actor Space is running"}
|
24 |
-
|
25 |
-
@app.post("/predict/")
|
26 |
-
async def predict(
|
27 |
-
instruction: str = Form(...),
|
28 |
-
image: UploadFile = Form(...)
|
29 |
-
):
|
30 |
-
# Read and process image
|
31 |
-
img_bytes = await image.read()
|
32 |
-
img = Image.open(io.BytesIO(img_bytes)).convert("RGB")
|
33 |
-
|
34 |
-
# Auto resize if needed
|
35 |
-
max_width, max_height = 480, 270
|
36 |
-
if img.width > max_width or img.height > max_height:
|
37 |
-
img.thumbnail((max_width, max_height))
|
38 |
-
|
39 |
-
# Run inference
|
40 |
-
click_point = inference(
|
41 |
-
instruction=instruction,
|
42 |
-
image=img,
|
43 |
-
model=model,
|
44 |
-
processor=processor,
|
45 |
-
tokenizer=tokenizer
|
46 |
-
)
|
47 |
-
return {"click_point": click_point}
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, UploadFile, Form
|
2 |
+
from PIL import Image
|
3 |
+
from gui_actor.modeling import Qwen2VLForConditionalGenerationWithPointer
|
4 |
+
from transformers import Qwen2VLProcessor
|
5 |
+
from gui_actor.inference import inference
|
6 |
+
import torch
|
7 |
+
import io
|
8 |
+
|
9 |
+
app = FastAPI()
|
10 |
+
|
11 |
+
# Load model + processor at startup
|
12 |
+
MODEL_NAME = "microsoft/GUI-Actor-2B-Qwen2-VL"
|
13 |
+
processor = Qwen2VLProcessor.from_pretrained(MODEL_NAME)
|
14 |
+
tokenizer = processor.tokenizer
|
15 |
+
model = Qwen2VLForConditionalGenerationWithPointer.from_pretrained(
|
16 |
+
MODEL_NAME,
|
17 |
+
torch_dtype=torch.float32,
|
18 |
+
device_map="auto"
|
19 |
+
).eval()
|
20 |
+
|
21 |
+
@app.get("/")
|
22 |
+
def home():
|
23 |
+
return {"message": "GUI-Actor Space is running"}
|
24 |
+
|
25 |
+
@app.post("/predict/")
|
26 |
+
async def predict(
|
27 |
+
instruction: str = Form(...),
|
28 |
+
image: UploadFile = Form(...)
|
29 |
+
):
|
30 |
+
# Read and process image
|
31 |
+
img_bytes = await image.read()
|
32 |
+
img = Image.open(io.BytesIO(img_bytes)).convert("RGB")
|
33 |
+
|
34 |
+
# Auto resize if needed
|
35 |
+
max_width, max_height = 480, 270
|
36 |
+
if img.width > max_width or img.height > max_height:
|
37 |
+
img.thumbnail((max_width, max_height))
|
38 |
+
|
39 |
+
# Run inference
|
40 |
+
click_point = inference(
|
41 |
+
instruction=instruction,
|
42 |
+
image=img,
|
43 |
+
model=model,
|
44 |
+
processor=processor,
|
45 |
+
tokenizer=tokenizer
|
46 |
+
)
|
47 |
+
return {"click_point": click_point}
|
48 |
+
|
49 |
+
if __name__ == "__main__":
|
50 |
+
import uvicorn
|
51 |
+
uvicorn.run("app:app", host="0.0.0.0", port=7860)
|
52 |
+
|