Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -7,7 +7,7 @@ import cv2
|
|
7 |
from PIL import Image
|
8 |
import time
|
9 |
|
10 |
-
|
11 |
# Load models from Hugging Face
|
12 |
sd_model_id = "bhoomikagp/sd2-interior-model-version2" ## test
|
13 |
# sd_model_id = "bhoomikagp/sd3-interior-model" ## SD3 model issue loading
|
@@ -16,6 +16,7 @@ controlnet_model_id = "lllyasviel/sd-controlnet-mlsd"
|
|
16 |
scheduler = EulerDiscreteScheduler.from_pretrained(sd_model_id, subfolder="scheduler")
|
17 |
#sd_pipeline = StableDiffusionPipeline.from_pretrained(sd_model_id, torch_dtype=torch.float16,scheduler=scheduler).to("cuda")
|
18 |
# Load ControlNet and Stable Diffusion ControlNet pipeline
|
|
|
19 |
controlnet = ControlNetModel.from_pretrained(controlnet_model_id, torch_dtype=torch.float16).to("cuda")
|
20 |
controlnet_pipeline = StableDiffusionControlNetPipeline.from_pretrained(
|
21 |
sd_model_id,
|
@@ -24,8 +25,8 @@ controlnet_pipeline = StableDiffusionControlNetPipeline.from_pretrained(
|
|
24 |
torch_dtype=torch.float16
|
25 |
).to("cuda")
|
26 |
"""
|
27 |
-
sd_model_id = "stabilityai/stable-diffusion-2-1"
|
28 |
-
scheduler = DPMSolverMultistepScheduler.from_pretrained(sd_model_id, subfolder="scheduler")
|
29 |
|
30 |
# Check if CUDA is available
|
31 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
7 |
from PIL import Image
|
8 |
import time
|
9 |
|
10 |
+
|
11 |
# Load models from Hugging Face
|
12 |
sd_model_id = "bhoomikagp/sd2-interior-model-version2" ## test
|
13 |
# sd_model_id = "bhoomikagp/sd3-interior-model" ## SD3 model issue loading
|
|
|
16 |
scheduler = EulerDiscreteScheduler.from_pretrained(sd_model_id, subfolder="scheduler")
|
17 |
#sd_pipeline = StableDiffusionPipeline.from_pretrained(sd_model_id, torch_dtype=torch.float16,scheduler=scheduler).to("cuda")
|
18 |
# Load ControlNet and Stable Diffusion ControlNet pipeline
|
19 |
+
"""
|
20 |
controlnet = ControlNetModel.from_pretrained(controlnet_model_id, torch_dtype=torch.float16).to("cuda")
|
21 |
controlnet_pipeline = StableDiffusionControlNetPipeline.from_pretrained(
|
22 |
sd_model_id,
|
|
|
25 |
torch_dtype=torch.float16
|
26 |
).to("cuda")
|
27 |
"""
|
28 |
+
#sd_model_id = "stabilityai/stable-diffusion-2-1"
|
29 |
+
#scheduler = DPMSolverMultistepScheduler.from_pretrained(sd_model_id, subfolder="scheduler")
|
30 |
|
31 |
# Check if CUDA is available
|
32 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|