File size: 12,135 Bytes
3ffc184
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
import gradio as gr
import torch
from diffusers import StableDiffusionPipeline, StableDiffusionControlNetPipeline, ControlNetModel, EulerDiscreteScheduler
from jinja2 import Template
import numpy as np
import cv2
from PIL import Image
import time

# Load models from Hugging Face
sd_model_id = "bhoomikagp/sd2-interior-model-version2" ## test
# sd_model_id = "bhoomikagp/sd3-interior-model" ## SD3 model issue loading
controlnet_model_id = "lllyasviel/sd-controlnet-mlsd"
# Load Stable Diffusion pipeline CUDA
scheduler = EulerDiscreteScheduler.from_pretrained(sd_model_id, subfolder="scheduler")
sd_pipeline = StableDiffusionPipeline.from_pretrained(sd_model_id, torch_dtype=torch.float16,scheduler=scheduler).to("cuda")
# Load ControlNet and Stable Diffusion ControlNet pipeline
controlnet = ControlNetModel.from_pretrained(controlnet_model_id, torch_dtype=torch.float16).to("cuda")
controlnet_pipeline = StableDiffusionControlNetPipeline.from_pretrained(
    sd_model_id,
    controlnet=controlnet,
    scheduler=scheduler,
    torch_dtype=torch.float16
).to("cuda")

# choices lists
option_choices = ["living_room", "bedroom", "kitchen"]
adj_1_choices = [
    "spacious", "cozy", "minimalist", "elegant", "modern", "rustic",
    "luxurious", "inviting", "airy", "sophisticated", "bright", "warm",
    "serene", "chic", "contemporary"
]
architecture_style_choices = [
    "modern", "contemporary", "traditional", "industrial", "scandinavian",
    "mid-century", "colonial", "art deco", "neo-classical", "mediterranean",
    "gothic", "baroque", "japanese", "brutalist", "tropical"
]
aesthetic_choices = [
    "bohemian", "vintage", "minimalist", "luxurious", "eclectic",
    "mid-century", "art deco", "modern farmhouse", "industrial chic",
    "shabby chic", "rustic elegance", "coastal", "urban", "transitional",
    "contemporary classic"
]
primary_color_choices = [
    "blue", "green", "beige", "grey", "white", "black",
    "cream", "brown", "taupe", "burgundy", "mustard",
    "terracotta", "olive", "peach", "navy"
]
wood_finish_choices = [
    "dark oak", "walnut", "mahogany", "teak", "maple",
    "cherry", "pine", "birch", "ash", "rosewood",
    "ebony", "cedar", "hickory", "elm", "red oak"
]
wall_color_choices = [
    "cream", "off-white", "charcoal", "sage green", "navy blue",
    "taupe", "light grey", "soft pink", "mustard yellow", "deep teal",
    "warm beige", "pearl white", "slate blue", "coral", "mint green"
]
tiles_choices = [
    "marble", "ceramic", "porcelain", "slate", "wooden-look",
    "mosaic", "granite", "terracotta", "cement", "quartz",
    "limestone", "onyx", "travertine", "glass", "encaustic"
]


# Templates for each room type
templates = {
    "living_room": """
    High quality, High resolution, Interior, Architecture, Revit, Autocad, Realistic 3D Render, vray, lumion, raytracing,
    of a {{ adj_1 }} living room, in {{ architecture_style }} architecture, with {{ aesthetic }} style,
    painted in {{ wall_color }} with {{ primary_color }} accents, {{ wood_finish }} wood finishes, and {{ tiles }} flooring.
    """,
    "bedroom": """
    High quality, High resolution, Interior, Architecture, Revit, Autocad, Realistic 3D Render, vray, lumion, raytracing,
    of a {{ adj_1 }} bedroom, in {{ architecture_style }} architecture, with {{ aesthetic }} style,
    painted in {{ wall_color }} with {{ primary_color }} accents, {{ wood_finish }} wood finishes, and {{ tiles }} flooring.
    """,
    "kitchen": """
    High quality, High resolution, Interior, Architecture, Revit, Autocad, Realistic 3D Render, vray, lumion, raytracing,
    of a {{ adj_1 }} kitchen, in {{ architecture_style }} architecture, with {{ aesthetic }} style,
    painted in {{ wall_color }} with {{ primary_color }} accents, {{ wood_finish }} cabinetry, and {{ tiles }} flooring.
    """
}

def generate_prompt(option, adj_1, architecture_style, aesthetic, primary_color, wood_finish, wall_color, tiles):
    # Validate inputs
    if adj_1 not in adj_1_choices:
        raise ValueError(f"Invalid adjective: '{adj_1}'. Accepted options are {adj_1_choices}")
    if architecture_style not in architecture_style_choices:
        raise ValueError(f"Invalid architecture style: '{architecture_style}'. Accepted options are {architecture_style_choices}")
    if aesthetic not in aesthetic_choices:
        raise ValueError(f"Invalid aesthetic style: '{aesthetic}'. Accepted options are {aesthetic_choices}")
    if primary_color not in primary_color_choices:
        raise ValueError(f"Invalid primary color: '{primary_color}'. Accepted options are {primary_color_choices}")
    if wood_finish not in wood_finish_choices:
        raise ValueError(f"Invalid wood finish: '{wood_finish}'. Accepted options are {wood_finish_choices}")
    if wall_color not in wall_color_choices:
        raise ValueError(f"Invalid wall color: '{wall_color}'. Accepted options are {wall_color_choices}")
    if tiles not in tiles_choices:
        raise ValueError(f"Invalid tiles: '{tiles}'. Accepted options are {tiles_choices}")

    # Select the template based on the room type option
    template_str = templates.get(option.lower())
    if not template_str:
        raise ValueError(f"Invalid option: '{option}'. Available options are {option_choices}")

    # Render the template
    template = Template(template_str)
    return template.render(
        adj_1=adj_1,
        architecture_style=architecture_style,
        aesthetic=aesthetic,
        primary_color=primary_color,
        wood_finish=wood_finish,
        wall_color=wall_color,
        tiles=tiles
    )

# Function to generate initial image
def generate_initial_image(n_images=1, option='living_room',  adj_1="spacious", architecture_style="modern", aesthetic="minimalist",
                      primary_color="neutral", wood_finish="oak", wall_color="off-white", tiles="marble"):
    # Generate the prompt from choices
    gen_prompt = generate_prompt(option, adj_1, architecture_style, aesthetic, primary_color, wood_finish, wall_color, tiles)

    images = []  # List to store generated images along with seeds
    for i in range(n_images):
        # Generate a random seed for reproducibility
        seed = torch.randint(0, 2**32, (1,)).item()
        generator = torch.manual_seed(seed)

        # Generate the image with the prompt and Stable Diffusion pipeline
        cfg = 8 # Configuring guidance scale
        steps = 30  # Number of inference steps
        width, height = 640, 512
        # pipeline without controlnet
        img = sd_pipeline(prompt=gen_prompt, guidance_scale=cfg, num_inference_steps=steps, width=width, height=height, generator=generator).images[0]

        # Append the seed and image to the list for tracking
        images.append((seed, img))
    return images

# Function to modify image using ControlNet pipeline
def modify_image_with_controlnet(selected_image, additional_prompt, option='living_room',  adj_1="spacious", architecture_style="modern", aesthetic="minimalist",
                      primary_color="brown", wood_finish="walnut", wall_color="beige", tiles="ceramic"):
    gen_prompt = generate_prompt(option, adj_1, architecture_style, aesthetic, primary_color, wood_finish, wall_color, tiles)
    gen_prompt += '(('+additional_prompt+'))'
    seed = selected_image[0]
    generator = torch.manual_seed(seed)
    cfg = 8  # Configuring guidance scale
    steps = 30  # Number of inference steps
    width, height = 640, 512
    # preprocessig for control net
    img = np.array(selected_image[1])
    gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
    edges = cv2.Canny(gray, 100, 200)
    edges_image = Image.fromarray(edges)
    controlnet_strength = 0.85
    image = controlnet_pipeline(prompt=gen_prompt, image=edges_image, guidance_scale=cfg, width=width, height=height,
                 controlnet_conditioning_scale=controlnet_strength, num_inference_steps=steps, generator=generator).images[0]
    return image

# Gradio app logic
def generate_image(option, adj_1, architecture_style, aesthetic, primary_color, wood_finish, wall_color, tiles, n_images, progress=gr.Progress()):
    generated_images = generate_initial_image(
        n_images=n_images,
        option=option,
        adj_1=adj_1,
        architecture_style=architecture_style,
        aesthetic=aesthetic,
        primary_color=primary_color,
        wood_finish=wood_finish,
        wall_color=wall_color,
        tiles=tiles
    )

    display_images = [img.resize((640, 512)) for _, img in generated_images]  # Resize only for display
    image_identifiers = [f"Image-{i+1}" for i in range(n_images)]

    return display_images, generated_images, image_identifiers


def modify_image(selected_image_id, additional_prompt, option, adj_1, architecture_style, aesthetic, primary_color, wood_finish, wall_color, tiles, images):
    # Parse selected image identifier to get the index
    image_index = int(selected_image_id.split("-")[1]) - 1
    selected_image = images[image_index]  # Retrieve the (seed, original_img) tuple without resizing

    # Modify image using ControlNet
    modified_image = modify_image_with_controlnet(
        selected_image=selected_image,
        additional_prompt=additional_prompt,
        option=option,
        adj_1=adj_1,
        architecture_style=architecture_style,
        aesthetic=aesthetic,
        primary_color=primary_color,
        wood_finish=wood_finish,
        wall_color=wall_color,
        tiles=tiles
    )
    return modified_image

# Interface
with gr.Blocks() as app:
    gr.Markdown("# Interior Design Image Generation and Modification")

    # Image generation options
    with gr.Row():
        option = gr.Radio(label="Room Type", choices=option_choices, value="living_room")
        adj_1 = gr.Radio(label="Primary Adjective", choices=adj_1_choices, value="spacious")
        architecture_style = gr.Radio(label="Architecture Style", choices=architecture_style_choices, value="modern")

    with gr.Row():
        aesthetic = gr.Radio(label="Aesthetic", choices=aesthetic_choices, value="minimalist")
        primary_color = gr.Radio(label="Primary Color", choices=primary_color_choices, value="neutral")
        wood_finish = gr.Radio(label="Wood Finish", choices=wood_finish_choices, value="oak")

    with gr.Row():
        wall_color = gr.Radio(label="Wall Color", choices=wall_color_choices, value="off-white")
        tiles = gr.Radio(label="Tile Type", choices=tiles_choices, value="marble")

    n_images = gr.Slider(label="Number of Images to Generate", minimum=1, maximum=5, step=1, value=1)

    # Button to generate images
    generate_btn = gr.Button("Generate Images")
    output_images = gr.Gallery(label="Generated Images", columns=5)  # Display resized images in gallery layout
    output_generated_images = gr.State()  # Hidden state to store original (unmodified) images data
    output_identifiers = gr.State()  # Hidden state for image identifiers

    # Image selection and modification
    selected_image_id = gr.Radio(label="Select an Image for Modification", choices=[])
    additional_prompt = gr.Textbox(label="Additional Prompt for Modification", placeholder="OPTIONAL")
    modify_btn = gr.Button("Modify Image")
    modified_image = gr.Image(label="Modified Image")

    # Button actions
    generate_btn.click(
        fn=generate_image,
        inputs=[option, adj_1, architecture_style, aesthetic, primary_color, wood_finish, wall_color, tiles, n_images],
        outputs=[output_images, output_generated_images, output_identifiers]
    )

    # Update radio button options after images are generated
    output_images.change(
        fn=lambda identifiers: gr.update(choices=identifiers, visible=True),  # Populate with image identifiers
        inputs=[output_identifiers],
        outputs=[selected_image_id]
    )

    # Trigger modification on button click
    modify_btn.click(
        fn=modify_image,
        inputs=[selected_image_id, additional_prompt, option, adj_1, architecture_style, aesthetic, primary_color, wood_finish, wall_color, tiles, output_generated_images],
        outputs=modified_image
    )

app.launch(debug=True)