import os import gradio as gr from transformers import TextStreamer from peft import PeftModel from unsloth import FastLanguageModel # Load your model and tokenizer model_name = "Renjith95/renj-portfolio-finetuned-model" # Replace with your model name auth_token = os.getenv("HF_TOKEN") # Now this should work # print("Auth token:", auth_token) # To verify it's loaded # Loading the base model and applying the local adapter. max_seq_length = 2048 # Choose any! We auto support RoPE Scaling internally! dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+ load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False. # 4bit pre quantized models we support for 4x faster downloading + no OOMs. fourbit_models = [ "unsloth/mistral-7b-bnb-4bit", "unsloth/mistral-7b-instruct-v0.2-bnb-4bit", "unsloth/llama-2-7b-bnb-4bit", "unsloth/llama-2-13b-bnb-4bit", "unsloth/codellama-34b-bnb-4bit", "unsloth/tinyllama-bnb-4bit", "unsloth/gemma-7b-bnb-4bit", # New Google 6 trillion tokens model 2.5x faster! "unsloth/gemma-2b-bnb-4bit", ] # More models at https://huggingface.co/unsloth model, tokenizer = FastLanguageModel.from_pretrained( model_name = "unsloth/mistral-7b-instruct-v0.3-bnb-4bit", # Choose ANY! eg teknium/OpenHermes-2.5-Mistral-7B max_seq_length = max_seq_length, dtype = dtype, load_in_4bit = load_in_4bit, token = auth_token, # use one if using gated models like meta-llama/Llama-2-7b-hf ) model = PeftModel.from_pretrained(model, "Renjith95/renj-portfolio-finetuned-adapter", use_auth_token=auth_token) FastLanguageModel.for_inference(model) # tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=auth_token) # model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, use_auth_token=auth_token) text_streamer = TextStreamer(tokenizer, skip_prompt = True) """ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference """ def respond(message, history): messages = [] for user_msg, assistant_msg in history: messages.append({"role": "user", "content": user_msg}) messages.append({"role": "assistant", "content": assistant_msg}) messages.append({"role": "user", "content": message}) inputs = tokenizer.apply_chat_template( messages, tokenize=True, add_generation_prompt=True, return_tensors="pt" ).to(model.device) outputs = model.generate( input_ids=inputs, max_new_tokens=512, use_cache=True, temperature=0.7, top_p=0.95, ) response = tokenizer.decode(outputs[0][inputs.shape[1]:], skip_special_tokens=True) return response demo = gr.ChatInterface( respond, title="Renj Chatbot", description="Ask me anything about my portfolio and projects." ) if __name__ == "__main__": demo.launch(share = True)