import os import gradio as gr from huggingface_hub import InferenceClient from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline import torch # Load your model and tokenizer model_name = "Renjith95/renj-portfolio-finetuned-model" # Replace with your model name auth_token = os.getenv("HF_TOKEN") # Get token from environment variable tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=auth_token) model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, use_auth_token=auth_token) """ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference """ # client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") def respond(message, history, system_message, max_tokens, temperature, top_p): messages = [{"role": "system", "content": system_message}] for user_msg, assistant_msg in history: messages.append({"role": "user", "content": user_msg}) messages.append({"role": "assistant", "content": assistant_msg}) messages.append({"role": "user", "content": message}) inputs = tokenizer.apply_chat_template( messages, tokenize=True, add_generation_prompt=True, return_tensors="pt" ).to(model.device) outputs = model.generate( input_ids=inputs, max_new_tokens=max_tokens, use_cache=True, temperature=temperature, top_p=top_p, ) response = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0] # Assuming your model's response is the last part after the user's message response = response.split(message)[-1].strip() yield response """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch(share = True)