Spaces:
Runtime error
Runtime error
import os | |
import gradio as gr | |
from huggingface_hub import InferenceClient | |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline | |
import torch | |
# Load your model and tokenizer | |
model_name = "Renjith95/renj-portfolio-finetuned-model" # Replace with your model name | |
auth_token = os.getenv("HF_TOKEN") # Get token from environment variable | |
tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=auth_token) | |
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, use_auth_token=auth_token) | |
""" | |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference | |
""" | |
# client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") | |
def respond(message, history, system_message, max_tokens, temperature, top_p): | |
messages = [{"role": "system", "content": system_message}] | |
for user_msg, assistant_msg in history: | |
messages.append({"role": "user", "content": user_msg}) | |
messages.append({"role": "assistant", "content": assistant_msg}) | |
messages.append({"role": "user", "content": message}) | |
inputs = tokenizer.apply_chat_template( | |
messages, | |
tokenize=True, | |
add_generation_prompt=True, | |
return_tensors="pt" | |
).to(model.device) | |
outputs = model.generate( | |
input_ids=inputs, | |
max_new_tokens=max_tokens, | |
use_cache=True, | |
temperature=temperature, | |
top_p=top_p, | |
) | |
response = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0] | |
# Assuming your model's response is the last part after the user's message | |
response = response.split(message)[-1].strip() | |
yield response | |
""" | |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface | |
""" | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p (nucleus sampling)", | |
), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch(share = True) | |