File size: 2,423 Bytes
c5a91ee
bffceb3
 
c5a91ee
 
 
 
 
 
 
 
bffceb3
 
 
 
c5a91ee
bffceb3
 
c5a91ee
bffceb3
c5a91ee
 
 
bffceb3
 
c5a91ee
bffceb3
c5a91ee
 
 
 
 
 
 
 
 
bffceb3
 
c5a91ee
 
 
 
 
 
bffceb3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
910698f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import os
import gradio as gr
from huggingface_hub import InferenceClient
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
import torch
# Load your model and tokenizer
model_name = "Renjith95/renj-portfolio-finetuned-model"  # Replace with your model name
auth_token = os.getenv("HF_TOKEN")  # Get token from environment variable
tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=auth_token)
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, use_auth_token=auth_token)


"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
# client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")


def respond(message, history, system_message, max_tokens, temperature, top_p):
    messages = [{"role": "system", "content": system_message}]
    for user_msg, assistant_msg in history:
        messages.append({"role": "user", "content": user_msg})
        messages.append({"role": "assistant", "content": assistant_msg})
    messages.append({"role": "user", "content": message})

    inputs = tokenizer.apply_chat_template(
        messages,
        tokenize=True,
        add_generation_prompt=True,
        return_tensors="pt"
    ).to(model.device)

    outputs = model.generate(
        input_ids=inputs,
        max_new_tokens=max_tokens,
        use_cache=True,
        temperature=temperature,
        top_p=top_p,
    )
    response = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
    
    # Assuming your model's response is the last part after the user's message
    response = response.split(message)[-1].strip()  
    yield response
"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
demo = gr.ChatInterface(
    respond,
    additional_inputs=[
        gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
        gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=0.95,
            step=0.05,
            label="Top-p (nucleus sampling)",
        ),
    ],
)


if __name__ == "__main__":
    demo.launch(share = True)