|
|
|
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
from alias_free_activation.torch.resample import UpSample1d, DownSample1d
|
|
|
|
|
|
from alias_free_activation.cuda import load
|
|
|
|
anti_alias_activation_cuda = load.load()
|
|
|
|
|
|
class FusedAntiAliasActivation(torch.autograd.Function):
|
|
"""
|
|
Assumes filter size 12, replication padding on upsampling/downsampling, and logscale alpha/beta parameters as inputs.
|
|
The hyperparameters are hard-coded in the kernel to maximize speed.
|
|
NOTE: The fused kenrel is incorrect for Activation1d with different hyperparameters.
|
|
"""
|
|
|
|
@staticmethod
|
|
def forward(ctx, inputs, up_ftr, down_ftr, alpha, beta):
|
|
activation_results = anti_alias_activation_cuda.forward(
|
|
inputs, up_ftr, down_ftr, alpha, beta
|
|
)
|
|
|
|
return activation_results
|
|
|
|
@staticmethod
|
|
def backward(ctx, output_grads):
|
|
raise NotImplementedError
|
|
return output_grads, None, None
|
|
|
|
|
|
class Activation1d(nn.Module):
|
|
def __init__(
|
|
self,
|
|
activation,
|
|
up_ratio: int = 2,
|
|
down_ratio: int = 2,
|
|
up_kernel_size: int = 12,
|
|
down_kernel_size: int = 12,
|
|
fused: bool = True,
|
|
):
|
|
super().__init__()
|
|
self.up_ratio = up_ratio
|
|
self.down_ratio = down_ratio
|
|
self.act = activation
|
|
self.upsample = UpSample1d(up_ratio, up_kernel_size)
|
|
self.downsample = DownSample1d(down_ratio, down_kernel_size)
|
|
|
|
self.fused = fused
|
|
|
|
def forward(self, x):
|
|
if not self.fused:
|
|
x = self.upsample(x)
|
|
x = self.act(x)
|
|
x = self.downsample(x)
|
|
return x
|
|
else:
|
|
if self.act.__class__.__name__ == "Snake":
|
|
beta = self.act.alpha.data
|
|
else:
|
|
beta = (
|
|
self.act.beta.data
|
|
)
|
|
alpha = self.act.alpha.data
|
|
if (
|
|
not self.act.alpha_logscale
|
|
):
|
|
alpha = torch.log(alpha)
|
|
beta = torch.log(beta)
|
|
|
|
x = FusedAntiAliasActivation.apply(
|
|
x, self.upsample.filter, self.downsample.lowpass.filter, alpha, beta
|
|
)
|
|
return x
|
|
|