Spaces:
Running
Running
Ruslan Magana Vsevolodovna
commited on
Commit
·
16a94a1
1
Parent(s):
9e7dce3
Update app.py
Browse files
app.py
CHANGED
@@ -18,12 +18,16 @@ from os import getcwd
|
|
18 |
import glob
|
19 |
import nltk
|
20 |
nltk.download('punkt')
|
21 |
-
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
22 |
description = " Video Story Generator with Audio \n PS: Generation of video by using Artifical Intellingence by dalle-mini and distilbart and gtss "
|
23 |
title = "Video Story Generator with Audio by using dalle-mini and distilbart and gtss "
|
24 |
tokenizer = AutoTokenizer.from_pretrained("sshleifer/distilbart-cnn-12-6")
|
25 |
model = AutoModelForSeq2SeqLM.from_pretrained("sshleifer/distilbart-cnn-12-6")
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
27 |
def get_output_video(text):
|
28 |
inputs = tokenizer(text,
|
29 |
max_length=1024,
|
@@ -50,8 +54,8 @@ def get_output_video(text):
|
|
50 |
models_root=models_root,
|
51 |
is_reusable=False,
|
52 |
is_verbose=True,
|
53 |
-
|
54 |
-
dtype=torch.float32
|
55 |
)
|
56 |
|
57 |
image = model.generate_image(
|
|
|
18 |
import glob
|
19 |
import nltk
|
20 |
nltk.download('punkt')
|
|
|
21 |
description = " Video Story Generator with Audio \n PS: Generation of video by using Artifical Intellingence by dalle-mini and distilbart and gtss "
|
22 |
title = "Video Story Generator with Audio by using dalle-mini and distilbart and gtss "
|
23 |
tokenizer = AutoTokenizer.from_pretrained("sshleifer/distilbart-cnn-12-6")
|
24 |
model = AutoModelForSeq2SeqLM.from_pretrained("sshleifer/distilbart-cnn-12-6")
|
25 |
+
|
26 |
+
#device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
27 |
+
device = torch.device('cuda')
|
28 |
+
# transfer model
|
29 |
+
model.to(device)
|
30 |
+
|
31 |
def get_output_video(text):
|
32 |
inputs = tokenizer(text,
|
33 |
max_length=1024,
|
|
|
54 |
models_root=models_root,
|
55 |
is_reusable=False,
|
56 |
is_verbose=True,
|
57 |
+
dtype=torch.float16 if fp16 else torch.float32
|
58 |
+
#dtype=torch.float32
|
59 |
)
|
60 |
|
61 |
image = model.generate_image(
|