Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -19,6 +19,17 @@ import matplotlib.pyplot as plt
|
|
| 19 |
import gc # Import the garbage collector
|
| 20 |
from audio import *
|
| 21 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
# Download necessary NLTK data
|
| 24 |
try:
|
|
@@ -46,30 +57,39 @@ def log_gpu_memory():
|
|
| 46 |
print("CUDA is not available. Cannot log GPU memory.")
|
| 47 |
|
| 48 |
# --------- MinDalle Image Generation Functions ---------
|
| 49 |
-
|
| 50 |
# Load MinDalle model once
|
| 51 |
-
|
|
|
|
| 52 |
"""
|
| 53 |
-
Load the MinDalle model.
|
| 54 |
|
| 55 |
Args:
|
| 56 |
models_root: Path to the directory containing MinDalle models.
|
| 57 |
-
fp16: Whether to use float16 for faster generation (requires CUDA).
|
| 58 |
|
| 59 |
Returns:
|
| 60 |
An instance of the MinDalle model.
|
| 61 |
"""
|
| 62 |
print("DEBUG: Loading MinDalle model...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
return MinDalle(
|
| 64 |
is_mega=True,
|
| 65 |
models_root=models_root,
|
| 66 |
-
is_reusable=False,
|
| 67 |
is_verbose=True,
|
| 68 |
-
dtype=
|
| 69 |
device=device
|
| 70 |
)
|
| 71 |
|
| 72 |
-
# Initialize the MinDalle model
|
| 73 |
min_dalle_model = load_min_dalle_model()
|
| 74 |
|
| 75 |
def generate_image_with_min_dalle(
|
|
|
|
| 19 |
import gc # Import the garbage collector
|
| 20 |
from audio import *
|
| 21 |
import os
|
| 22 |
+
# Define a fallback for environments without GPU
|
| 23 |
+
if os.environ.get("SPACES_ZERO_GPU") is not None:
|
| 24 |
+
import spaces
|
| 25 |
+
else:
|
| 26 |
+
class spaces:
|
| 27 |
+
@staticmethod
|
| 28 |
+
def GPU(func):
|
| 29 |
+
def wrapper(*args, **kwargs):
|
| 30 |
+
return func(*args, **kwargs)
|
| 31 |
+
return wrapper
|
| 32 |
+
|
| 33 |
|
| 34 |
# Download necessary NLTK data
|
| 35 |
try:
|
|
|
|
| 57 |
print("CUDA is not available. Cannot log GPU memory.")
|
| 58 |
|
| 59 |
# --------- MinDalle Image Generation Functions ---------
|
|
|
|
| 60 |
# Load MinDalle model once
|
| 61 |
+
# Dynamically determine device and precision
|
| 62 |
+
def load_min_dalle_model(models_root: str = 'pretrained'):
|
| 63 |
"""
|
| 64 |
+
Load the MinDalle model, automatically selecting device and precision.
|
| 65 |
|
| 66 |
Args:
|
| 67 |
models_root: Path to the directory containing MinDalle models.
|
|
|
|
| 68 |
|
| 69 |
Returns:
|
| 70 |
An instance of the MinDalle model.
|
| 71 |
"""
|
| 72 |
print("DEBUG: Loading MinDalle model...")
|
| 73 |
+
|
| 74 |
+
if torch.cuda.is_available():
|
| 75 |
+
device = 'cuda'
|
| 76 |
+
dtype = torch.float16
|
| 77 |
+
print("DEBUG: Using GPU with float16 precision.")
|
| 78 |
+
else:
|
| 79 |
+
device = 'cpu'
|
| 80 |
+
dtype = torch.float32
|
| 81 |
+
print("DEBUG: Using CPU with float32 precision.")
|
| 82 |
+
|
| 83 |
return MinDalle(
|
| 84 |
is_mega=True,
|
| 85 |
models_root=models_root,
|
| 86 |
+
is_reusable=False,
|
| 87 |
is_verbose=True,
|
| 88 |
+
dtype=dtype,
|
| 89 |
device=device
|
| 90 |
)
|
| 91 |
|
| 92 |
+
# Initialize the MinDalle model (will now automatically use GPU if available)
|
| 93 |
min_dalle_model = load_min_dalle_model()
|
| 94 |
|
| 95 |
def generate_image_with_min_dalle(
|