Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,57 +2,79 @@ import pandas as pd
|
|
2 |
from prophet import Prophet
|
3 |
import gradio as gr
|
4 |
import plotly.graph_objs as go
|
|
|
5 |
|
6 |
# Function to train the model and generate forecast
|
7 |
def predict_sales(time_frame):
|
8 |
-
all_sales_data = pd.read_csv('All sales - House of Pizza.csv')
|
9 |
|
10 |
-
# Clean up the 'Total paid' column
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
# Convert the 'Date' column to datetime, coercing errors
|
17 |
all_sales_data['Date'] = pd.to_datetime(all_sales_data['Date'], format='%m/%d/%Y %H:%M', errors='coerce')
|
18 |
|
19 |
# Drop rows with invalid dates
|
20 |
all_sales_data = all_sales_data.dropna(subset=['Date'])
|
|
|
|
|
21 |
|
22 |
-
# Prepare the DataFrame
|
23 |
df = pd.DataFrame({
|
24 |
-
'Date':
|
25 |
-
'Total paid':
|
26 |
})
|
27 |
|
|
|
|
|
|
|
28 |
# Prepare Prophet model
|
29 |
-
model = Prophet()
|
30 |
df['ds'] = df['Date']
|
31 |
-
df['y'] = df['Total paid']
|
32 |
model.fit(df[['ds', 'y']])
|
33 |
-
|
34 |
# Future forecast based on the time frame
|
35 |
future_periods = {
|
36 |
-
'
|
37 |
-
'
|
38 |
-
'
|
39 |
-
'
|
|
|
40 |
}
|
41 |
|
42 |
-
# Get the
|
43 |
-
|
44 |
-
|
45 |
|
46 |
-
#
|
47 |
-
|
48 |
|
49 |
-
# Filter future_time to include
|
50 |
-
future_only = future_time[
|
51 |
forecast = model.predict(future_only)
|
52 |
|
53 |
-
#
|
54 |
-
|
55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
# Create a Plotly graph
|
57 |
fig = go.Figure()
|
58 |
fig.add_trace(go.Scatter(
|
@@ -63,26 +85,42 @@ def predict_sales(time_frame):
|
|
63 |
marker=dict(size=6),
|
64 |
hovertemplate='Date: %{x}<br>Forecasted Sales: %{y}<extra></extra>'
|
65 |
))
|
66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
fig.update_layout(
|
68 |
title='Sales Forecast using Prophet',
|
69 |
-
xaxis_title='Date
|
70 |
yaxis_title='Sales Price',
|
71 |
-
xaxis=dict(tickformat="%Y-%m-%d
|
72 |
yaxis=dict(autorange=True)
|
73 |
)
|
74 |
|
75 |
-
return forecast_table, fig
|
76 |
|
77 |
# Gradio interface
|
78 |
def run_gradio():
|
79 |
# Create the Gradio Interface
|
80 |
-
time_options = ['7 days', '10 days', '15 days', '1 month']
|
81 |
gr.Interface(
|
82 |
fn=predict_sales, # Function to be called
|
83 |
inputs=gr.components.Dropdown(time_options, label="Select Forecast Time Range"), # User input
|
84 |
outputs=[
|
85 |
gr.components.Dataframe(label="Forecasted Sales Table"), # Forecasted data in tabular form
|
|
|
86 |
gr.components.Plot(label="Sales Forecast Plot") # Plotly graph output
|
87 |
],
|
88 |
title="Sales Forecasting with Prophet",
|
|
|
2 |
from prophet import Prophet
|
3 |
import gradio as gr
|
4 |
import plotly.graph_objs as go
|
5 |
+
import numpy as np
|
6 |
|
7 |
# Function to train the model and generate forecast
|
8 |
def predict_sales(time_frame):
|
9 |
+
all_sales_data = pd.read_csv('/content/All sales - House of Pizza.csv')
|
10 |
|
11 |
+
# Clean up the 'Total paid' column by splitting based on '₨' symbol and converting to float
|
12 |
+
def clean_total_paid(val):
|
13 |
+
if isinstance(val, str): # Only process if the value is a string
|
14 |
+
amounts = [float(x.replace(',', '').strip()) for x in val.split('₨') if x.strip()]
|
15 |
+
return sum(amounts) # Sum if multiple values exist
|
16 |
+
elif pd.isna(val): # Handle NaN values
|
17 |
+
return 0.0
|
18 |
+
return val # If it's already a float, return it as-is
|
19 |
+
|
20 |
+
# Apply the cleaning function to the 'Total paid' column
|
21 |
+
all_sales_data['Total paid'] = all_sales_data['Total paid'].apply(clean_total_paid)
|
22 |
|
23 |
# Convert the 'Date' column to datetime, coercing errors
|
24 |
all_sales_data['Date'] = pd.to_datetime(all_sales_data['Date'], format='%m/%d/%Y %H:%M', errors='coerce')
|
25 |
|
26 |
# Drop rows with invalid dates
|
27 |
all_sales_data = all_sales_data.dropna(subset=['Date'])
|
28 |
+
all_sales_data['date_only'] = all_sales_data['Date'].dt.date
|
29 |
+
daily_sales = all_sales_data.groupby('date_only').agg(total_sales=('Total paid', 'sum')).reset_index()
|
30 |
|
31 |
+
# Prepare the DataFrame for Prophet
|
32 |
df = pd.DataFrame({
|
33 |
+
'Date': daily_sales['date_only'],
|
34 |
+
'Total paid': daily_sales['total_sales']
|
35 |
})
|
36 |
|
37 |
+
# Apply log transformation
|
38 |
+
df['y'] = np.log1p(df['Total paid']) # Using log1p to avoid log(0)
|
39 |
+
|
40 |
# Prepare Prophet model
|
41 |
+
model = Prophet(weekly_seasonality=True) # Enable weekly seasonality
|
42 |
df['ds'] = df['Date']
|
|
|
43 |
model.fit(df[['ds', 'y']])
|
44 |
+
|
45 |
# Future forecast based on the time frame
|
46 |
future_periods = {
|
47 |
+
'Next Day': 1,
|
48 |
+
'7 days': 7,
|
49 |
+
'10 days': 10,
|
50 |
+
'15 days': 15,
|
51 |
+
'1 month': 30
|
52 |
}
|
53 |
|
54 |
+
# Get the last historical date and calculate the start date for the forecast
|
55 |
+
last_date_value = df['Date'].iloc[-1]
|
56 |
+
forecast_start_date = pd.Timestamp(last_date_value) + pd.Timedelta(days=1) # Start the forecast from the next day
|
57 |
|
58 |
+
# Generate the future time DataFrame starting from the day after the last date
|
59 |
+
future_time = model.make_future_dataframe(periods=future_periods[time_frame], freq='D')
|
60 |
|
61 |
+
# Filter future_time to include only future dates starting from forecast_start_date
|
62 |
+
future_only = future_time[future_time['ds'] >= forecast_start_date]
|
63 |
forecast = model.predict(future_only)
|
64 |
|
65 |
+
# Exponentiate the forecast to revert back to the original scale
|
66 |
+
forecast['yhat'] = np.expm1(forecast['yhat']) # Use expm1 to handle the log transformation
|
67 |
+
forecast['yhat_lower'] = np.expm1(forecast['yhat_lower']) # Exponentiate lower bound
|
68 |
+
forecast['yhat_upper'] = np.expm1(forecast['yhat_upper']) # Exponentiate upper bound
|
69 |
+
|
70 |
+
# Create a DataFrame for weekends only
|
71 |
+
forecast['day_of_week'] = forecast['ds'].dt.day_name() # Get the day name from the date
|
72 |
+
weekends = forecast[forecast['day_of_week'].isin(['Saturday', 'Sunday'])] # Filter for weekends
|
73 |
+
|
74 |
+
# Display the forecasted data for the specified period
|
75 |
+
forecast_table = forecast[['ds', 'yhat', 'yhat_lower', 'yhat_upper']].head(future_periods[time_frame])
|
76 |
+
weekend_forecast_table = weekends[['ds', 'yhat', 'yhat_lower', 'yhat_upper']] # Weekend forecast
|
77 |
+
|
78 |
# Create a Plotly graph
|
79 |
fig = go.Figure()
|
80 |
fig.add_trace(go.Scatter(
|
|
|
85 |
marker=dict(size=6),
|
86 |
hovertemplate='Date: %{x}<br>Forecasted Sales: %{y}<extra></extra>'
|
87 |
))
|
88 |
+
|
89 |
+
# Add lines for yhat_lower and yhat_upper
|
90 |
+
fig.add_trace(go.Scatter(
|
91 |
+
x=forecast['ds'], y=forecast['yhat_lower'],
|
92 |
+
mode='lines',
|
93 |
+
name='Lower Bound',
|
94 |
+
line=dict(color='red', dash='dash')
|
95 |
+
))
|
96 |
+
|
97 |
+
fig.add_trace(go.Scatter(
|
98 |
+
x=forecast['ds'], y=forecast['yhat_upper'],
|
99 |
+
mode='lines',
|
100 |
+
name='Upper Bound',
|
101 |
+
line=dict(color='green', dash='dash')
|
102 |
+
))
|
103 |
+
|
104 |
fig.update_layout(
|
105 |
title='Sales Forecast using Prophet',
|
106 |
+
xaxis_title='Date',
|
107 |
yaxis_title='Sales Price',
|
108 |
+
xaxis=dict(tickformat="%Y-%m-%d"),
|
109 |
yaxis=dict(autorange=True)
|
110 |
)
|
111 |
|
112 |
+
return forecast_table, weekend_forecast_table, fig # Return the forecast table, weekend forecast, and plot
|
113 |
|
114 |
# Gradio interface
|
115 |
def run_gradio():
|
116 |
# Create the Gradio Interface
|
117 |
+
time_options = ['Next Day', '7 days', '10 days', '15 days', '1 month']
|
118 |
gr.Interface(
|
119 |
fn=predict_sales, # Function to be called
|
120 |
inputs=gr.components.Dropdown(time_options, label="Select Forecast Time Range"), # User input
|
121 |
outputs=[
|
122 |
gr.components.Dataframe(label="Forecasted Sales Table"), # Forecasted data in tabular form
|
123 |
+
gr.components.Dataframe(label="Weekend Forecasted Sales Table"), # Weekend forecast data
|
124 |
gr.components.Plot(label="Sales Forecast Plot") # Plotly graph output
|
125 |
],
|
126 |
title="Sales Forecasting with Prophet",
|