Spaces:
Sleeping
Sleeping
File size: 2,831 Bytes
aaec2db |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
import gradio as gr
import os
from langchain import PromptTemplate, LLMChain
from langchain_together import Together
import pdfplumber
# Set the API key with double quotes
os.environ['TOGETHER_API_KEY'] = "d88cb7414e4039a84d2ed63f1b47daaaa4230c4c53a422045d8a30a9a3bc87d8"
def extract_text_from_pdf(pdf_file, max_pages=16):
text = ""
with pdfplumber.open(pdf_file) as pdf:
for i, page in enumerate(pdf.pages):
if i >= max_pages:
break
text += page.extract_text() + "\n"
return text
def Bot(text, question):
chat_template = """
Based on the provided context: {text}
Please answer the following question: {Questions}
Only provide answers that are directly related to the context. If the question is unrelated, respond with "I don't know".
"""
prompt = PromptTemplate(
input_variables=['text', 'Questions'],
template=chat_template
)
llama3 = Together(model="meta-llama/Llama-3-70b-chat-hf", max_tokens=50)
Generated_chat = LLMChain(llm=llama3, prompt=prompt)
try:
response = Generated_chat.invoke({
"text": text,
"Questions": question
})
response_text = response['text']
response_text = response_text.replace("assistant", "")
# Post-processing to handle repeated words and ensure completeness
words = response_text.split()
seen = set()
filtered_words = [word for word in words if word.lower() not in seen and not seen.add(word.lower())]
response_text = ' '.join(filtered_words)
response_text = response_text.strip() # Ensuring no extra spaces at the ends
if not response_text.endswith('.'):
response_text += '.'
return response_text
except Exception as e:
return f"Error in generating response: {e}"
def ChatBot(history, document, question):
greetings = ["hi", "hello", "hey", "greetings", "what's up", "howdy"]
question_lower = question.lower().strip()
if question_lower in greetings or any(question_lower.startswith(greeting) for greeting in greetings):
return history + [("User", question), ("Bot", "Hello! How can I assist you with the document today?")]
text = extract_text_from_pdf(document)
response = Bot(text, question)
history.append(("User", question))
history.append(("Bot", response))
return history
with gr.Blocks() as iface:
chatbot = gr.Chatbot()
document = gr.File(label="Upload PDF Document", type="filepath")
question = gr.Textbox(label="Ask a Question", placeholder="Type your question here...")
def respond(history, document, question):
return ChatBot(history, document, question)
question.submit(respond, [chatbot, document, question], chatbot)
iface.launch(debug=True)
|